Цифра и “цифрит”. Мысли вслух. Часть 2

Котельников, его теорема, выходной каскад ЦАП и DSD

Считается доказанным, что любой стохастический (произвольный, случайной формы) сигнал, спектр которого выше определенной частоты равен нулю, может быть восстановлен по цифровым отсчетам, взятым через одинаковые промежутки времени, частота следования которых более чем в два раза должна превышать верхнюю частоту в спектре исходного сигнала. Для восстановления нужно каждый отсчет умножить на так называемый “Базис Котельникова”, который представляет собой некую интерполяционную функцию определенного вида.

Итак, еще раз – для точного восстановления сигнала необходимо производить определенные математические вычисления над имеющимися отсчетами – тем или иным способом 🙂

В случае с NOS ЦАП эти вычисления производит аналоговый выходной каскад, на вход которого с микросхемы ЦАП подается некие фиксированные уровни напряжения или тока, пропорциональные значению цифровых отсчетов, а на его выходе – изменения напряжения должны быть “гладкими”, “аналоговыми”. 🙂 Общепринятая схемотехника такого выходного каскада – интегратор напряжения (ФНЧ) с мощным буферным каскадом. Для меня совершенно очевидно, что функционально простое интегрирование отсчетов – лишь очень грубое приближение к реально требуемым математическим вычислениям по формуле Котельникова и таким образом строго говоря – ни один из ЦАП не способен 100% точно восстановить исходный аналоговый сигнал.


Попробуем хотя бы в первом приближении “По Котельникову” восстановить исходный аналоговый сигнал из цифрового, записанного в формате CD-audio. Формула восстановления сигнала:

kotelnikova-teoremy-nischeta-

t – текущее время, n – номер отсчета, T – период, через который берутся отсчеты 1/44.1кГц = 22.7мкс.

Предположим, что исходный аналоговый сигнал – обычный синус. Необходимо определиться, сколько нужно вычислить промежуточных значений между соседними отсчетами. В практике приближенных инженерных вычислений, для уверенного восстановления синуса достаточно 15…20 отсчетов. Возьмем 15 отсчетов. Для получения любого промежуточного значения нам нужна сумма ряда от “-” до “+” бесконечности. В реальности длительность сигнала, который записан на CD ограничена по времени 🙂 , поэтому логично снизить количество учитываемых отсчетов в сумме ряда до какого-нибудь конечного числа.

Для этого произведем такую оценку: через какое время пик (максимальное значение) функции станет меньше, чем единица младшего разряда.

Сигнал у нас 16 разрядный (CD-audio). Производим оценку:

kotelnikova-teoremy-nischeta-

Здесь 0<t<T, синус во времени меняется от -1 до +1 (заменяем на 1, что тоже неверно с точки зрения математики, но вполне допустимо с точки зрения физики процесса). Решая неравенство относительно “n”, получаем, что надо учитывать минимум 20860 отсчетов. Формула восстановления сигнала требует брать отсчеты не только “назад”, но и “вперед”, значит надо учитывать уже 41720 отсчетов.
Это значит, что относительно текущего момента времени, для достоверного восстановления текущего значения амплитуды сигнала необходимо использовать как 20860 “прошлых” отсчетов, так и 20860 “будущих” отсчетов, то есть необходим некий промежуточный буфер исходных цифровых данных, над которыми производятся вычисления, плюс некий буфер для хранения результатов. В тот момент, когда обработаны все отсчеты до времени t=T, последний отсчет из “прошедшего” времени убирается из буфера и добавляется следующий отсчет из “будущего” времени. Текущее время изменяется в пределах 0<t<T.

Это очень упрощенная математическая модель идеального ФНЧ для формата 16/44. Такой фильтр невозможно реализовать в рамках аналоговой схемотехники, но методом цифровой обработки исходных отсчетов вполне можно посчитать любой промежуточный отсчет между двумя соседними исходными.

Оценим необходимые нам вычислительные мощности. Согласно формуле восстановления сигнала очевидно, что для получения одного значения необходимо выполнить 6 действий. Для получения необходимого количества (15) промежуточных значений в реальном времени необходимо выполнить:

N=15*(6+1(сумма ряда))*41720*44100 ~ 193 млрд. операций в секунду.

Если использовать таблицу готовых sin(x)/x, вычислений нужно меньше: одно умножение и одно сложение на каждый отсчет.

N=15*2*41720*44100~ 55 млрд. операций в секунду

Конечно, алгоритм вычислений можно оптимизировать. Например – брать не
15 отсчетов, а один. В этом случае:

N = ~ 3.7 млрд. операций в секунду – что тоже довольно много.

Можно формулу Котельникова использовать в варианте интерполяционной формулы Уиттекера – Шеннона. По всей видимости, можно применить и так называемое “быстрое” преобразования Фурье. Вероятно, этот вариант наиболее реально реализовать в “железе” – и скорее всего он уже кем-то реализован.

Для меня совершенно очевидно, что в реальном масштабе времени интерполяция с необходимым уровнем точности невозможна, а ошибки, вносимые процессом пересчета и интерполяции – тем заметнее, чем менее стационарен был оцифрованный сигнал. На практике это значит, что в оцифрованном для CD звуке нет очень многого из того, что присутствует в изначально аналоговой записи. А в аналоговой записи нет многого, что можно услышать в живом звуке.

Так же очевидно, что оцифровка в формате DSD позволяет свести ошибки до минимального технически достижимого (на сегодняшний момент) минимума. По всей видимости это значит, что DSD оцифровки мастер лент и (или) “прямая” DSD запись с последующим воспроизведением через Native-DSD ЦАП позволяют в итоге получить качество звучания, наиболее приближенное к “старой доброй” аналоговой записи. Но для обработки DSD в “реальной жизни” необходимо применение цифровой фильтрации. (см. Часть 1). Очередная “петля времени” ?

Февраль 2020 г.Владивосток

Цифра и “цифрит”. Мысли вслух. Часть 1

Оцифровка, ее запись и воспроизведение

Для удобства дальнейших рассуждений представим, что на АЦП подается сигнал с виниловой пластинки, на которой присутствует дефект, создающий острый импульс в некоторый момент времени. В цифровом образе этот импульс будет записан ровно в тот момент, когда он появился в звуковой дорожке, без какого-либо предварительного “звона”. **** В равной степени это справедливо для любого одиночного короткого высокочастотного сигнала, в том числе и музыкального, записываемого на студийном оборудовании 🙂

Но, по какой-то причине – после прохождения классического Цифрового Фильтра (ЦФ) с АЧХ и ФЧХ, близкой к идеальной, на осциллограмме восстановленного ЦАП сигнала практически всегда обнаруживается предшествующий “звон” или выброс, которого не было в исходной фонограмме. Значит ли это, что ЦФ вносит искажения?

На мой взгляд, правильный ответ нужно искать не только в особенностях цифро-аналогового преобразования, но и в особенностях аналого-цифрового преобразования. Тот самый импульс на дорожке виниловой пластинки перед АЦП прошел через необходимый в таком случае ФНЧ, но этот ФНЧ реализован в виде реальной электрической схемы, то есть не идеален. За счет этого  какая-то часть спектра импульса, лежащая выше частоты дискретизации АЦП обязательно останется в сигнале. И в момент аналого-цифрового преобразования (записи) АЦП создаст цифровой образ ослабленного импульсного сигнала у которого все гармоники частот, находящихся выше частоты дискретизации, будут включены в звуковой частотный диапазон.

Далее, при воспроизведении сохраненного оцифрованного сигнала (файла) ЦАП восстановит аналоговый сигнал, который соответствует исходному сигналу, плюс конечно и ультразвуковую часть спектра, включенную в область звуковых частот. То есть – восстановится импульсный сигнал, казалось бы успешно “отфильтрованный” на этапе аналого-цифрового преобразования и – более того,  из-за неидеальности цифро-аналогового преобразования этот сигнал будет иметь форму, весьма далекую от исходной – с выбросами и предварительными “звонами”. Строго говоря, в том что они появились нет никакой проблемы или неисправности ЦАП и Цифрового Фильтра. Информация о них есть в самой цифровой фонограмме и она обязательно проявятся, если ее восстанавливать максимально точно математически. Можно сказать, что ЦФ в ЦАП как бы “не знает”, что исходный сигнал прошел аналоговый ФНЧ перед оцифровкой 🙂

То есть – “Математически Точный” Цифровой Фильтр не “фильтрует” некий исходный цифровой сигнал – а по заданным алгоритмам воссоздает заново некую цифровую последовательность, информацию об исходном сигнале.

Существуют Цифровые Фильтры, которые не имеют “звона” при восстановлении импульса, но они не являются математически точными, так как вносят значительные фазовые и (или) амплитудо-частотные искажения. Идеальный ФНЧ имеет полосу пропускания от 0 Гц и по шкале времени (фазы, по сути) работает симметрично от минус до плюс бесконечности, что на практике (в “железе”) реализовать невозможно. Не идеальный ФНЧ можно сконструировать ограничив шкалу времени от нуля до бесконечности (ограничить по фазе) и такими образом убрать предварительный “звон”, но – невозможно добиться одновременно отсутствия “звона” и ограничения частотных и (или) динамических (“амплитудных” 🙂 ) потерь в сигнале и отсутствия восстановления гармоник частот помех.

На практике обычно применяют два наиболее распространенных способа.

Первый способ – наиболее прост – согласиться на потери в исходном сигнале. Поскольку предварительный “звон” имеет сравнительно узкий частотный спектр, близкий к половине частоты дискретизации, то применив Цифровой ФНЧ с пониженной частотой среза можно существенно ослабить его заметность. Например можно выбрать частоту среза ФНЧ =19 kHz вместо 22 kHz и выбрать менее крутой спад АЧХ, что почти гарантированно ослабит различные паразитные ВЧ составляющие исходного сигнала. При этом, конечно неизбежно теряется и часть полезного сигнала, но существенно снижается заметность цифровых артефактов (aka “цифрит”) и исчезает “звон” при воспроизведении импульсов.Такие Цифровые Фильтры  обычно имеют в своем названии слово “Soft”.

Второй способ – отказаться от Цифрового Фильтра, но при этом уйти вверх по частоте дискретизации, тем самым транспонируя спектр помех и их гармоник существенно выше звуковой области. В частности, если при воспроизведении файлов выполнить передискритизацию с частотой ~192K, то применяя только Аналоговый ФНЧ на выходе ЦАП с частотой среза, например ~ 50 kHz, то можно добиться хорошего компромисса по качеству звука при широкой полосе воспроизводимых частот в области ВЧ, минимальных фазовых искажениях и очень низком уровне остаточных ультразвуковых составляющих помех и их гармоник.

То есть, логично получается вполне очевидный вывод, что для воспроизведения CD-rip’ов и  студийных исходников 48…192K без их конвертации в DSD лучше всего подойдет Hi-Res PCM ЦАП без ЦФ и с несложным аналоговым ФНЧ в выходном каскаде. 🙂

Январь 2020 г.Владивосток

P.S. К таким выводам меня привел довольно старый пост неизвестного автора на одном из форумов по оцифровке “винила”. К сожалению, имя автора и название форума я не запомнил.

Иногда они возвращаются. Часть 5. Комбайн для HD800

Недавно известный форумчанин SharapOFF принес мне на upgrade мой же “Комбайн” – Усилитель + ЦАП для телефонов Sennheiser HD800” – конструкция 2012 года. Напоминаю, что в то славное время специализированные усилители для наушников считались редкой причудой.

Что сделано в 2019 – схему усилителя немного модифицировал до “Light Voice – ЦАП и усилитель для наушников – Система выходного дня”, ЦАП заменил на современный USB DSD комплект XMOS+AK449Х с custom прошивкой, переделал блок питания, выбрал более интересный алюминиевый корпус меньших размеров. Регуляторы оставил те же, поскольку во-первых – они прекрасно работают и, во-вторых – это настоящие ALPS, приобретенные в digikey. И да – в 2012 году еще было возможно найти настоящие ALPS 🙂

Сентябрь 2019 г. Владивосток

Усилитель на октальных лампах для наушников STAX SR-007/009. Версия 2019.

Версия 2019 года. Немного модифицированная схема и новый корпус из алюминия. Добавлена возможность контролировать и балансировать ток покоя ламп выходного каскада 🙂

Июнь…август 2019 г. Владивосток

Двухтактный усилитель для акустики Pioneer CS-100

Про этот усилитель мне задали множество вопросов задолго до публикации статьи, поэтому и рассказ будет подробнее чем обычно 🙂 .

Технические требования к усилителю следующие – поскольку акустика Pioneer CS-100 довольно чувствительная, то выходная мощность может быть небольшой, то есть 8…12 ватт на канал – достаточно. Особенностью акустики является оформление НЧ звена “Закрытый Ящик”, для такого оформления очень нежелателен черезмерный уровень инфранизких составляющих в НЧ сигнале и это значит, что необходимо более внимательно отнестись к ходу АЧХ и полосе пропускания усилителя в НЧ области. Импеданс этой акустики довольно неравномерен, поэтому для получения более-менее ровного тонального баланса усилитель должен иметь постоянное выходное сопротивление во всей полосе рабочих частот. Я считаю, что для 16 Ом акустики в оформлении “Закрытый Ящик” выходное сопротивление усилителя должно быть в пределах 2…3 Ом и для получения требуемого вполне логично применить неглубокую ООС.

Так же как и музыкальные стили, схемотехнические решения усилительных устройств подвержены влиянию времени 🙂 Современный звук – с высоким разрешением и расширенным диапазоном в области НЧ, детальный и динамичный. Сведение и мастеринг современных фонограмм даже в стерео позволяет получить поразительную трехмерную звуковую картину, для точной передачи которой необходимо уделить внимание получению гладкой ФЧХ усилителя и сохранению ее вида при изменении уровня громкости.

Схема усилителя.

Первый каскад – SRPP, преимущества которого широко известны 🙂 – “почти автоматическая” установка режимов при изменении напряжения питания, стабильность режимов при старении ламп, отличные динамические характеристики, широкая полоса и хороший спектр искажений при работе на высокоомную нагрузку. По сравнению с обычным каскадом с резистивной нагрузкой для заданного сопротивления нагрузки SRPP обладает несколько лучшим PSRR.

Второй каскад – традиционный ФИ с “длинным хвостом” по схеме Schmitt. При выборе режима работы этого каскада нужно учесть ту особенность, что поскольку первый каскад имеет очень низкий уровень искажений, а в сбалансированном выходном каскаде четные гармоники сигнала будут значительно ослаблены (скомпенсированы), то от второго каскада требуется получить вполне определенный спектр искажений, а именно – низкий уровень третьей (и других нечетных) гармоник. При этом уровень второй гармоники не только может, но и должен быть немного выше “обычного”. Для триода 6SN7 это возможно при выборе сопротивления анодной нагрузки Ra в пределах 3…4*Ri, где Ri – динамическое внутреннее сопротивление триода в выбранной рабочей точке. Для 6SN7 Ri=~7K, то есть оптимальное сопротивление Ra = ~21…28K. Для улучшения симметрии прямого и инверсного сигналов на выходе каскада сопротивление в аноде правого (на схеме) триода необходимо выбрать на 2…4% выше, чем левого. Так же для улучшения симметрии выходного напряжения в некоторых случаях имеет определенный смысл вместо резистора катодной нагрузки (собственно так называемого “длинного хвоста”) установить регулируемый источник тока IXYS.

Несколько замечаний о выборе ламп и режима работы второго каскада. Важно учесть ту особенность, что второй каскад не должен перегружаться (как по входу, так и по выходу) ранее, чем выходной каскад. То есть так называемый “раскрыв” характеристик у ламп второго каскада должен быть довольно широкий и выбранное напряжение смещения должно быть больше максимального пикового напряжения сигнала на выходе первого каскада в момент перегрузки выходного каскада 🙂 . При этом нужно принять во внимание, что особого усиления от второго каскада не требуется. Попутное замечание – исходя из вышеизложенного, применение во втором каскаде такой интересной лампы, как 6N7 – в этой схеме затруднительно.

Выходной каскад выполнен по схеме с ультралинейным включением. С одной стороны, это дает возможность получить требуемую выходную мощность при низких искажениях и хорошем усилении, но – с другой стороны – выходное сопротивление такого каскада довольно высокое и для его снижения необходимо применить ООС. При расчете выходного каскада на тетродах и (или) пентодах почти всегда возникает соблазн применить тетродное (пентодное) включение, так как при почти одинаковых требованиях к источнику питания у пентодного каскада все “выше” и “больше” 🙂 – усиление и выходная мощность пентодного каскада больше, но при этом – коэффициент гармоник – выше и спектр гармонических искажений часто получается совсем уж некрасивым, выходное сопротивление каскада – выше. То есть в случае выходного каскада на пентодах для получения низкого выходного сопротивления и малого коэффициента гармоник необходимо применение довольно глубокой ООС. Нужно отметить, что например для открытых акустических оформлений низкое выходное сопротивление усилителя не является важным требованием и в общем-то – если вдруг получится отыскать четверку близких по характеристикам высоколинейных немецких пентодов 🙂 – то звуковой результат может получится весьма впечатляющим и без применения ООС. Для выходного каскада на триодах ситуация немного иная – без ООС и с высококачественными выходными трансформаторами – вполне возможно получить требуемое значение выходного сопротивления, малый коэффициент гармоник и “красивый” спектр искажений. Но, к сожалению – в большинстве случаев в рамках заданных требований к источнику питания для стандартной акустики выходная мощность может быть недостаточна. С триодами наиболее интересный звуковой результат получается только со специализированной, “легкой” – то есть чувствительной и эффективной акустикой, с максимально простыми пассивными фильтрами на высококачественных звуковых компонентах.

Кстати, о компонентах. 🙂 В выходном каскаде этого усилителя я применил трансформаторы Hashimoto НWC30-8 и винтажную четверку отличных “звуковых” лучевых тетродов 6V6G. Для более безопасной и долговечной работы ламп применено комбинированное смещение. Помимо уменьшения влияния тока первой сетки на рабочую точку и улучшенную температурную стабильность, – это решение позволяет более точно устанавливать и в требуемых пределах подстраивать режимы ламп выходного каскада по мере их приработки. Я считаю такую регулировку необходимой, поскольку к сожалению – подобранные по параметрами винтажные четверки дороги и, что важнее – встречаются все реже.

Как я уже упоминал, при разработке усилителя предполагалось, что требуемые характеристики будут достигнуты в том числе и посредством применения неглубокой общей ООС. В свою очередь это значит, что необходимо предусмотреть некоторый запас усиления. Коэффициент усиления первого каскада =~ 15, второго ~8. Выходной каскад обеспечивает согласование с нагрузкой, то есть усиливает сигнал по току и (почти) не усиливает по напряжению. С выходными трансформаторами Hashimoto в ультралинейном включении ламп 6V6G коэффициент усиления по напряжению выходного каскада = ~ 2, при этом выходное напряжение (без нагрузки) = ~ 20.2V RMS. При подключении нагрузки 16 Ом оно уменьшается до ~ 7.88V RMS, то есть выходное сопротивление каскада Ro = ~ 25 Ом. Максимальное выходное напряжение на нагрузке 16 Ом =~ 18V RMS (Кг=~5%). Общий коэффициент усиления всех трех каскадов по напряжению K= 15*8*2 = 240. Это значит, что для получения на нагрузке требуемых 14V RMS (12W@16Ом) на вход усилителя достаточно подать ~ 60 mV RMS. Требуемая чувствительность по входу =~ 0.7…1V – то есть для введения ООС имеется запас по усилению от 10 до 17 раз. Это значит, что Глубина Обратной Связи Foc (величина, показывающая во сколько раз уменьшится коэффициент усиления после введения ООС) может быть выбрана =~ 10 (20dB). Это хорошая, “правильная” цифра. 🙂 Выходное сопротивление требуется понизить до Rо(ос) =3 Ом, то есть в ~ 8 раз. Зная требуемую чувствительность, коэффициент усиления K и глубину обратной связи Foc можно легко посчитать требуемый коэффициент передачи цепи обратной связи β и номиналы резисторов делителя в цепи ООС. Fос = 1+β*K При этом Ro(oc) = Ro/(1+β*K ) = Ro/Foc

На практике, если расчетная Глубина Обратной Связи минимально – достаточна (Foc >=4), то это является гарантией того, что заметное уменьшение выходного сопротивления принципиально достижимо и номиналы делителя в цепи ОС возможно подобрать в ходе настройки. В этом случае итоговое усиление будет определяться коэффициентом передачи цепи обратной связи β и останется стабильным даже при значительном изменении усиления каскадов, вызванного старением ламп. Так же из этих рассуждений следует важное замечание относительно требуемой конфигурации усилителя с выходным каскадом в пентодном (тетродном) включении. Так как его выходное сопротивление выше, чем у каскада в ультралинейном включении, то для его снижения требуется введение более глубокой ООС и, как следствие – необходим больший запас усиления без ООС. Обычно этого добиваются увеличением усиления в первом каскаде, применяя триод с большим усилением или пентод. Или, как хороший вариант – можно применить в ФИ каскаде с “длинным хвостом” триод с немного большим усилением – например 6N7 в этом случае подойдет очень хорошо.

Несколько слов о выходном трансформаторе. К сожалению, качество выходного трансформатора – отлично слышно. Для этой конструкции я рекомендую Hashimoto НWC30-8 – это наиболее оптимальный вариант. Минимальный вариант, который имеет смысл применить для аналогичного каскада в ультралинейном включении – это Hammond 1608. Важное замечание. На мой “слух” для двухтактного выходного каскада не имеет никакого смысла применение oversized трансформаторов – от увеличения размеров звук подвижнее, динамичнее и лучше точно не станет, а вот стать хуже – может запросто. Нет никакого смысла применять ультралинейное включение и низкокачественный узкополосный трансформатор (пусть даже и больших размеров). С таким выходным трансформатором введение ООС ухудшит звук, музыкальная картинка будет мутной, плоской и серой – примерно такой же, как у посредственного транзисторного усилителя, только с так называемым “теплым ламповым окрасом” 🙂

Несколько слов о конденсаторе, шунтируюшем резистор ООС. Этот конденсатор корректирует ход АЧХ усилителя в области частот выше ~ 20 кГц, его номинал точно подбирается в ходе настройки, при тестировании усилителя сигналом формы “меандр”. Подбором емкости добиваются наиболее “ровной и плоской” вершины меандра частотой 5…7 кГц..

Блок питания усилителя вполне традиционен.

Схемотехническое решение с очень небольшими модификациями применяется мной примерно с 2006 года. Технические характеристики блока питания многократно превосходят требования, заданные при разработке конструкции.

Итоговые характеристики усилителя.

Лампы – Sylvania 6SN7GT = 2шт (входные ~ 1955г)  6SN7WGT (Tung Sol JAN 1959г) = 2 шт (драйверный ФИ каскад) 6V6G (Sylvania branded “Marconi Canada” ~1946 г) = 4 шт, две подобранные по параметрам пары

  • Количество входов – 2 RCA и XLR (балансный), выбираются переключателем на задней панели
  • Входное сопротивление = 10 кОм
  • Количество выходов для подключения нагрузки = 2, раздельные клеммы для 8 и 16 Ом
  • Коэффициент демпфирования импеданса нагрузки >= 5
  • Выходное сопротивление по выходу 16 Ом, не более 3 Ом, по выходу 8 Ом не более 1,5 Ом
  • Номинальное входное напряжение = ~0.7V RMS
  • Номинальная выходная мощность = ~2*12W RMS 
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<300uV (“взвешено” по кривой “A”)
  • Полоса воспроизводимых частот при номинальной выходной мощности  =20 Гц…70 кГц с неравномерностью не более 0.5dB. Измерено на эквиваленте нагрузки сопротивлением 16 Ом.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 16 Ом при номинальной выходной мощности <= 1%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -20 dB. Измерено на эквиваленте нагрузки сопротивлением 16 Ом.

Несколько фото:

Апрель…май 2019 г. Владивосток

Серия Гибридных Усилителей Zen-X для наушников STAX

На этот раз я представляю две конструкции усилителей для электростатических наушников. Они имеют общий “источник” 🙂 – это мой же усилитель Auridux-V (Январь 2012 г.)

Общие рассуждения.

Все, кто когда-нибудь что-нибудь читал об устройстве электростатических наушников знают, что для работы излучателей необходимо так называемое “поляризующее” напряжение (BIAS). В частности, для современных излучателей наушников STAX напряжение BIAS = 580V, при этом предполагается, что постоянное напряжение на обкладках статоров = 0V. Что же произойдет, если напряжение BIAS увеличить, например до 2000V? Ничего особенного – скорее всего электрический разряд пробьет изоляцию между обкладками и наушники будут испорчены. То же самое произойдет, если напряжение BIAS оставить неизменным, но увеличивать напряжение на обкладках. Но что же будет, если в процессе работы амплитудное напряжение сигнала на обкладках статоров превысит напряжение BIAS? Увы, никакого “волшебства” не случится- сигнал будет ограничиваться, то есть резко возрастут искажения, а при увеличении амплитуды колебаний мембран излучателей – через некоторое время пленка мембран растянется и произойдет короткое замыкание либо между обкладками статоров либо между одной из обкладок и электродом BIAS. В итоге – в любом из вариантов наушники поедут в ремонт. Учитывая эту особенность, мне, например немного странно читать в характеристиках усилителя “Blue Hawaii” – такую строку: “Output Voltage: 1600V peak-to-peak”. Цифра, безусловно интересная , но звучит скорее как предупреждение 🙂

Идеи построения схемы. Цифры.

Предположим, что желаемый размах выходного напряжения усилителя должен быть где-то в пределах удвоенного напряжения BIAS, то есть +- 580V, округлим до 600+600, то есть 1200V peak-to-peak. Это ~=430V RMS, что означает 215V RMS на каждом из статоров, так как электростатические наушники предполагают балансный вариант подключения к выходному каскаду усилителя.

Так же предположим, что напряжение на входе = 1V RMS, что является вполне стандартным (и даже с некоторым “запасом”) для современных источников. Тогда, коэффициент усиления для каждого их “плеч” усилителя должен быть не менее 215. Совершенно очевидно, что в рамках более-менее стандартной схемотехники на более-менее доступных комплектующих однокаскадный вариант построения усилителя отпадает. Сложно, но вполне возможно реализовать двухкаскадную схему с таким усилением, а трехкаскадный вариант вполне реализуем.

Напряжения источника питания. В рамках более-менее стандартной схемотехники и более-менее доступных комплектующих 🙂 имеется известное конструктивное ограничение на рабочее напряжение конденсаторов фильтров питания. Высококачественные конденсаторы на рабочее напряжение 450…500V – вполне доступны, но есть определенные проблемы с конденсаторами на большие напряжения. Итак, конструктивно ограничим напряжение на выходе источника питания значением 400V, это позволит применить в схеме выпрямителя и фильтра конденсаторы на рабочее напряжение 450 и(или) 500V.

Нулевой потенциал на выходе усилителя. Совершенно очевидно, что при напряжении питания +400V получить напряжение на нагрузке = 215V RMS (600V Peak-To-Peak) возможно только в каскаде с трансформаторной или дроссельной нагрузкой и в случае с дроссельной нагрузкой необходимо применение выходного конденсатора. В случае резистивной нагрузки требуемый размах выходного напряжения при нулевом потенциале на выходе можно получить только при помощи дополнительного, так называемого “подземного” источника питания. При этом в состоянии покоя на резистивной нагрузке каскада будет рассеиваться довольно значительная тепловая мощность.

Таким образом, для выходного каскада с резистивной нагрузкой очевидны следующие особенности:

Для того, чтобы потенциал на выходе каскада был равен “0”, необходимо применить два источника питания – “положительной” и “отрицательной” полярности. При этом к источнику “положительной” полярности будет подключена анодная нагрузка каскада, а “минус” источника “отрицательной” полярности будет “общим” для выходного каскада. Это приводит к очевидному выводу, что если связь между входным и выходным каскадами будет емкостная, то межкаскадные конденсаторы должны быть рассчитаны на рабочее напряжение не менее, чем напряжение между “плюсом” и “минусом” источников питания выходного каскада. Второй вывод заключается в том, что на анодной нагрузке в состоянии покоя будет рассеиваться мощность, равная произведению напряжения источника питания “положительной” полярности на ток покоя выходного каскада. То есть конструктивно корпус усилителя должен быть снабжен хорошим теплоотводом.

Требуемые напряжения источников питания. Поскольку желаемый размах напряжения сигнала на выходе усилителя = +-600V, то требуемое напряжение “положительного” источника питания должно составить не менее +300V. Примем с некоторым запасом, что оно должно быть = +350V. С “отрицательным” напряжением источника питания все немного сложнее. Очевидно, что оно должно быть ниже -300V на величину, равную напряжению смещения выходных ламп (в случае автоматического смещения на катодном резисторе) плюс “остаточное” напряжение между анодом и катодом выходной лампы, когда она полностью открыта (напряжение смещения =0). Для испытаний выходных каскадов на различных лампах удобно сделать источник питания с “отрицательным” выходным напряжением регулируемым. Примем с некоторым запасом, что диапазон регулирования должен быть от -350 до -450V, при этом “положительный” источник питания должен быть рассчитан на ток нагрузки не менее, чем ток, потребляемый выходным и входным каскадами, а “отрицательный” источник питания должен быть рассчитан на ток нагрузки не менее тока потребления выходного каскада усилителя.

Примерная схема тестового блока питания.

Схема довольно типичная и каких-то особенностей не имеет. Стабилизаторы входного напряжения – обычные, параметрические. RC цепочки в затворах регулирующих транзисторов задают время нарастания выходного напряжения до номинального значения. Очевидно, что для ограничения колебания напряжения на нагрузке при включении усилителя напряжение “отрицательного” источника питания должно нарастать несколько быстрее, чем “положительного”, то есть “положительное” напряжение должно подаваться уже на прогретые лампы.

Накал ламп питается не стабилизированным переменным напряжением, потенциал накальных цепей “поднят” относительно каждого из “общих” источников питания на 50…70 Вольт.

Технологическая особенность – поскольку корпуса большинства электролитических конденсаторов слабо изолированы от их “минусового” вывода (сопротивление изоляции не превышает ~ 100 кОм), то при монтаже конденсаторов фильтра “отрицательного” источника питания их корпуса необходимо надежно изолировать от “шасси” усилителя.

Первый вариант схемы усилителя, два каскада, триоды, без ООС.

Первый каскад может быть выполнен на триодах с высоким усилением – например, вполне подойдут 6SL7, 6SF5. Как один из интересных вариантов можно применить двойной триод 6N7. Выходной каскад выполнен на двойном триоде 6BХ7 или на его “одиночном” эквиваленте 6AH4. На входе усилителя применен фазоинвертор на трансформаторе Jensen JT-11P4. Коэффициент усиления каждого из “плеч” первого каскада ~ 28. Нагрузкой выходного каскада является интегральный источник тока IXYS, Коэффициент усиления выходного каскада ~ 10, таким образом общий коэффициент усиления ~ 280, что даже несколько больше требуемых 215. Триод 6BХ7 обладает широким “раскрывом” характеристик, что минимизирует возможность перегрузки выходного каскада входным, а применение источника тока в качестве анодной нагрузки обеспечивает хорошую линейность каскада. Нагрузку можно подключить двумя способами – “традиционно” – к аноду выходной лампы, или к катоду интегрального источника тока, в этом случае выходной каскад представляет собой гибридный SRPP с низким выходным сопротивлением. Оба варианта подключения имеют свои достоинства и недостатки 🙂

Немного о выборе рабочей точки выходного каскада. (Справочно – выходной каскад на этой лампе я уже применял в моем самом первом “комбайне – усилителе” для STAX 303, 2011 год) Для того, чтобы получить размах выходного напряжения +-300V, напряжение между анодом и катодом 6BХ7 должно быть около 350V. Максимальная мощность, рассеиваемая на аноде каждой из “половинок” 6BХ7 не должна превышать 10W, что ограничивает ток покоя каскада пределом = 25mA. Поскольку ток покоя задается источником тока в анодной нагрузке и остается постоянным, то изменение напряжение смещения приводит к изменению напряжения между анодом и катодом лампы выходного каскада. Таким образом, подстраивая напряжение смещения можно установить “нулевой” потенциал (относительно “общего” “положительного” источника питания) на выходе усилителя. Из ВАХ видно, что при токе покоя (например) = 20mA “остаточное” напряжение между анодом и катодом при полностью открытой лампе составляет ~= 50V, а напряжение смещения в рабочей точке (350V, 20mA) = – 32V. Таким образом, требуемое напряжение “отрицательного” источника питания должно быть не менее = -(300+50+32 = 382)V. Для удобства работы и улучшения термостабильности выходного каскада я применил комбинированное смещение.

Для более безопасного “запуска” схемы номиналы резисторов автосмещения в катодах выходных ламп выбраны больше расчетных, а точная установка режима и “нуля” на выходах усилителя достигается подачей небольшого положительного напряжения смещения на сетки ламп выходного каскада. Помимо прочего, это позволило применить межкаскадные конденсаторы на рабочее напряжение 630V.

При токе покоя = 20mA и напряжении “положительного” источника питания = 350V, мощность, рассеиваемая в состоянии “покоя” на каждом из интегральных источников тока составит 20(mA)*350(V) = 7W. В схеме 4 источника тока – то есть потребуется очень надежный и качественный теплоотвод, способный постоянно отводить и рассеивать не менее 30W тепла.

Для этого варианта усилителя блок питания можно собрать по примерно такой схеме:

Несмотря на кажущуюся простоту схемы, сборка и наладка этого усилителя под силу только подготовленным DIYer’ам. В схеме присутствуют опасные напряжения и токи, а наладка конструкции без некоторых навыков и соответствующего набора измерительного оборудования – невозможна. Поэтому я не указал номиналы части элементов, а в схеме блока питания возможно есть небольшая ошибка. Желающие повторить конструкцию – пишите, я отвечу на возникшие вопросы. Или – рассчитайте номиналы самостоятельно, тем более что практически все требуемые “цифры” приведены в тексте 🙂

Второй вариант схемы. Три каскада, триоды с малым “u”, тетроды в триодном включении и неглубокая общая ООС.

Блок питания для этого варианта усилителя аналогичен тестовому. Схемотехническое решение аналогично тому, которое я применяю в двухтактных усилителях и в особых комментариях не нуждается. Необходимость применения такой конфигурации обусловлена тем, что конструкция должна была обеспечивать чувствительность ~ 0.5V RMS, при стабильности режимов по переменному напряжению (долговременная идентичность усиления в каналах при “приработке” ламп). Отсюда – логичное решение – три каскада усиления + общая ООС по переменному напряжению. Кстати, при необходимости ООС можно ввести и в первом варианте усилителя.

Несколько фото:

И еще несколько фото из рабочей тетради, наглядно иллюстрирующие “движение творческой мысли” 🙂

Январь…март 2019 г. Владивосток

Upgrade акустики Pioneer CS-100

Примерно с пару месяцев назад меня пригласили на “смотрины” и небольшую прослушку очень интересной и пожалуй даже в чем-то уникальной акустики Pioneеr CS-100, экземпляр который был недавно привезен из Японии. По результатам прослушки комплект акустических систем был приобретен и у счастливого владельца возник закономерный вопрос – а можно ли что-либо улучшить в акустике, которой в общем-то уже примерно 40 лет? (Спойлер: Можно!)

Но для начала немного технических подробностей. Pioneer CS-100 – полноразмерная напольная трехполосная акустическая система, выпускавшаяся в Японии с 1969 до примерно начала 80-х годов. Даже на сегодняшний день характеристики системы выдающиеся –

  • Схема построения: 3 полосы, 4 динамика, акустическое оформление закрытый ящик (!), напольное размещение.
  • Динамики: НЧ: 38cm (PW-38F). СЧ: 16cm (PM-16B, 2 шт, соединены параллельно), ВЧ рупорный (PT-102F, алюминиевая диафрагма)
  • Номинальный Импеданс: 8 или 16 Ом, выпускались два варианта
  • Номинальный диапазон воспроизводимых частот: 20…20000Hz
  • Номинальное звуковое давление: 97dB/W(!)
  • Максимальная подводимая мощность: 60W (@16 Ом)
  • Габаритные размеры. 600(ш) х960(в) x445(г) мм
  • Вес: 63kg


Схема фильтров довольно интересна. Фильтры НЧ (L1C1) и ВЧ (C4L4) звеньев – очень похожи на “классический” Linkwitz-Riley второго порядка с частотами раздела 600 и 6000 Hz, отсутствие цепей компенсации импеданса перед НЧ и ВЧ динамиками вероятно подразумевает, что их АЧХ исключительно ровны и свободны от нежелательных резонансов. Фильтр СЧ звена – более оригинален и представляет собой комбинацию фильтра первого порядка (L2C2), нагруженного на цепь увеличения импеданса в некоторой полосе частот (L3C3) и дополненного цепью выравнивания входного импеданса фильтра (L6R6C5). Вероятно, разработчики таким образом уходили от необходимости применения конденсаторов большой емкости. Элементы L5R5 шунтируют акустику ниже некоторой (довольно низкой) частоты, отбирая и рассеивая часть мощности усилителя, ограничивая тем самым амплитуду смещения диффузора НЧ динамика. Поскольку акустика – закрытый ящик – то в самом общем случае такое решение позволяет уменьшить уровень искажений в диапазоне ниже резонансной частоты НЧ динамика в этом оформлении и защитить подвес динамика от черезмерного смещения диффузора на пиках суб-НЧ сигналов. Переключатели SW1, SW2 и набор постоянных резисторов R1R2 R3R4 образуют “традиционные” для того времени L-Pad аттеньюаторы СЧ и ВЧ динамиков. Коммутация L-Pad в реальном фильтре немного отличалась от приведенной на схеме.

Импеданс (ZЧХ) акустики выглядит так:

В общем, “идеально-ровным” импеданс назвать вряд ли можно. Действие вспомогательных цепей L5R5 и L6R6C5 вполне очевидно проявляется на Z-ЧХ.

Примерно через неделю эксплуатации и “прогрева” акустики было принято решение провести небольшой upgrade – во первых, убрать из корпусов старый пыльный, колючий и практически “полу-распавшийся” 🙂 акустический наполнитель, демпфировать корпуса АС Шумоff и слоем синтепона, заменить проводку и немного модернизировать фильтры – заменить старые провода и конденсаторы на более современные, убрать “лишнее“, переделать монтаж – но без пересчета номиналов и пересведения фильтров. Оригинальный “звуковой почерк“. характерный для этой акустики – должен быть сохранен.

Поскольку эта акустика эксплуатируется в “винилово-ламповом” комплекте аудиооборудования, где выходная мощность усилителя сравнительно невелика (~ 20W на канал) и уровень суб-НЧ естественно ограничивается выходными трансформаторами и межкаскадными конденсаторами – то элементы L5R5 из схемы фильтра можно исключить. Далее, поскольку усилитель имеет сравнительно низкое выходное сопротивление (~ 1 Ом) и хорошо демпфирует 16-Ом акустику, то и в элементах L6R6С5 нет никакой необходимости. Без этих элементов с одной стороны, несколько увеличится неравномерность Z-ЧХ, но с другой стороны я считаю, что не стоит устанавливать компоненты без очевидной необходимости – чем меньше компенсирующих и(или) фазосдвигающих цепей, тем меньше их влияние на звук. Учитывая идею построения СЧ фильтра и особенности взаимодействия элементов L2C2 L3C3 я оставил все необходимые “родные” катушки индуктивности. Затем, поскольку акустические свойства помещения, в котором установлена эта акустическая система – известны и предсказуемы, то и переключатели SW1 SW2 можно исключить, перекоммутировав R1R2 R3R4 в необходимом соотношении. Таким образом после переделки не только уменьшилось чисто “контактных групп”, но и трассировка соединений элементов фильтра получилась логичнее и гораздо проще.
Естественно, “демонтаж винтажа” всегда вызывает массу эмоций, требует особой аккуратности, практических навыков и терпения. И конечно, пару раз в минуты искренности и просветления я весьма прямо и непосредственно выражал свое мнение о способе монтажа “плотная многослойная скрутка и пропайка”, старинном оргалите, “присохших” и хрупких от времени винтиках, “задубевшем” клее и кристаллизовавшемся припое… Кошки Муся и Фрося, с интересом наблюдавшие за процессом, очень внимательно и терпеливо выслушивали мои экспрессивные комментарии. 🙂

Схема Фильтра после небольшой доработки очевидна и в ее публикации нет особой необходимости. Уточню лишь, что R1=10.5 Ом, R2=42 Ом, R3=5.8 Ом, R4=42 Ом.

Z-ЧХ:


АЧХ, снятая в реальном помещении. “Качающийся” микрофон UMIK-1, True RTA (1/24 Oct, сглаживание до 1/3 Oct). АЧХ правого канала для наглядности сдвинута вверх. Пики на ~ 30 и 60 Гц – влияние комнаты.

Несколько Фото:

И да, совсем забыл. Звучание акустических систем до и после переделки – “…Это Небо и Земля…”. “Земля“, это конечно “до” 🙂 При этом – в результате доработки оригинальный “звуковой почерк” системы не пострадал.

Февраль…Март 2019 г.Владивосток