Моя система 2018. LCR Корректор

Это мое третье приближение к оптимальной конфигурации корректора на 600-ом LCR модулях. В этот раз я решил протестировать классический вариант, с согласованием импедансов при помощи межкаскадных трансформаторов. Итак, вот схема одного из двух опробованных мной вариантов:

Как видите – четыре каскада, два межкаскадных (один из них выполняет роль выходного) трансформатора, два межкаскадных конденсатора. Полное игнорирование идеи “короткого тракта”, а с учетом того, что корректор подключен к предусилителю – циничное игнорирование.  🙂  Тем удивительнее то, что на сегодняшний день – этот корректор (в моей системе) – наиболее прозрачный, динамичный и “стабильный” по звучанию из всех, что я слышал.  Я был очень озадачен таким звуковым результатом – поскольку он в общем-то противоречит техническому здравому смыслу. По всей видимости, даже с учетом вдвое большего (чем это обычно требуется) количества каскадов усиления – тот положительный вклад, который приносит в звук низкоимпедансная LCR коррекция – существенно “перевешивает” те (ранее незаметные!!!) звуковые артефакты связанные с применением классических высокоимпедансных RC цепей.

По схеме.

Первый каскад собран на двойном триоде 7F7 (можно применить 6113, 6SL7, 5751,12AХ7  и т.п.) и имеет коэффициент усиления =~30, второй каскад собран на тетроде 7С5 (можно применить 6V6GT, 6F6GT) в триодном включении, его коэффициент усиления =~1.8, LCR модуль ослабляет сигнал еще примерно на ~14 dB, таким образом при входном напряжении ~5mV (RMS)@1000Hz на выходе LCR модуля получаем ~55 mV. Далее сигнал усиливается третьим каскадом (коэффициент усиления =~12) и через межкаскадный конденсатор и регулятор уровня подается на четвертый каскад – с трансформаторной нагрузкой. В зависимости от того, какой требуется максимальный уровень выходного сигнала и насколько низкое требуется выходное сопротивление – выходной трансформатор может быть скоммутирован с коэффициентом передачи 1:1 или 1:0.5, коэффициент усиления каскада при этом будет 8 или 4, а выходное напряжение при этом будет ~ 5.4 или 2.7V (RMS), выходное сопротивление корректора во втором случае составит ~ 1 кОм. На практике, если выходного напряжения в пределах ~ 1…2V (RMS) – достаточно, то выходной трансформатор может быть такой, же как во втором каскаде и выходное сопротивление корректора в этом случае составит ~ 600 Ом. Более того, если применить транформаторы с приведенным сопротивлением первичной обмотки ~ 20K – например Hashimoto HL-20K-6 или Silk L-941S, то в качестве лампы второго каскада вполне можно применить “классический” двойной триод с Ri ~ 7K (VT231, 6SN7, 7N7,12AU7  и т.п.). Это позволит несколько уменьшить габариты конструкции и облегчить требования к блоку питания. На мой взгляд – это очень перспективный вариант корректора – схема остается примерно такая же, только лампы другие. 🙂

Блок питания выполнен по классической (для моих конструкций) схеме, анодное и накальное напряжения стабилизированы. В принципе, если применять  высококачественные трансформаторы питания Hashimoto – то при тщательно продуманном монтаже вполне возможно питание накала напряжением переменного тока, а анодное напряжение можно не стабилизировать, применив  RCLC фильтры.

Конструкция собрана на стандартном “классическом” шасси Hammond, состоящем из деревянной рамки и двух алюминиевых (верхней и нижней) панелей. Не могу сказать, что это оптимальный вариант шасси для корректора, тем не менее – уровень шумов, наводок и помех на выходе – очень низкий. Вероятно, напряжение источника питания стабильно и хорошо отфильтровано, а монтаж выполнен более-менее оптимально.  🙂

Корректор обладает выдающейся устойчивостью к перегрузкам, к “щелчкам” и инфранизкочастотным помехам – межкаскадные трансформаторы в этом помогают очень хорошо. На мой взгляд, хоть себестоимость конструкции довольно высока, но – разумно обоснована, поскольку соотношение “цена/качество – очень хорошее. В этом конкретном случае – применение дорогостоящих высококачественных трансформаторов и LCR модулей дает очевидный, слышимый и эффектный звуковой результат. 

Несколько Фото. 

 

Май 2018г.                                                                                        г.Владивосток

Моя система 2018. Усилители Мощности

Усилители собраны в виде моноблоков – на имеющихся в наличии шасси Hammond этот вариант компоновки мне показался наиболее удобен и практичен. Монтаж моноблоков НЕ зеркален.

Схемотехника традиционна – за основу взята схема усилителя “Ella” (см. статьи ~2012 года), я ее немного переработал исходя из имеющихся ламп и трасформаторов. Насчет ламп- это все те же “военные” локтальные лампы 40-х годов, о которых я уже упоминал в статье про корректор на “военных” триодах. Выходные трансорматоры – Hashimoto, трансформаторы питания – Raphaelite.

По схеме – три каскада, входной каскад -SRPP – он задает общие “динамические” звуковые характеристики усилителя, второй каскад ФИ по схеме Шмидта (Schmidt Phase Splitter) – он сохраняет “музыкальность”- оба каскада на лампах 7N7. Выходной каскад на лампах 7С5 или 5B/255M с рабочей точкой максмально  близкой к режиму работы в классе “А” с ультралинейным включением ламп и с автоматическим регулируемым смещением. На сегодгодняшний день такой тип смещения я считаю наиболее оптимальным. По сравнению с фиксированным регулируемым смещением общий уровень искажений получается несколько выше, но клиппинг – существенно “мягче”, то есть при перегрузке искажения нарастают не так резко и их рост на слух малозаметен. Я считаю это очень важным звуковым преимуществом. Для уменьшения выходного сопротивления, уменьшения уровня и гармонизации спектра искажений, а так же для стабилизации коэффициента усиления и для меньшего влияния на звук импеданса акустики я применил неглубокую общую ООС. В этой конструкции применение общей ООС очень желательно, хотя и не обязательно.

Блок питания – вполне традиционный для моих конструкций – с выпрямителем на полупроводниковых диодах и фильтром на полевом транзисторе, особенностей не имеет и поэтому его схему я не публикую 🙂

Основные технические характеристики:

  • Входное сопротивление = 10 кОм
  • Выходное сопротивление =< 0.87 Ом 
  • Номинальное входное напряжение = ~0.7V RMS
  • Номинальная нагрузка = 4 и 8 Ом (Стандартно = 4 Ом)
  • Номинальное выходная мощность = 9W RMS
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<200uV (“взвешено” по кривой “A”)
  • Полоса воспроизводимых частот при номинальной выходной мощности18 Гц…48кГц с неровномерностью не более 0.5dB. Измерено на эквиваленте нагрузки сопротивлением 8 Ом.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 8 Ом при номинальном выходной мощности <= 1%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -20 dB. Измерено на эквиваленте нагрузки сопротивлением 8 Ом.

Этот усилитель прекрасно сочетается с выскочувствительной многополосной акустикой с умеренно “сложным” импедансом и дает динамичное, объемное, насыщенное и музыкальное звучание. Возможно, что это наиболее интересный двухтактный усилитель малой и (или) средней мощности с выходным каскадом на экранированных лампах. 🙂 

Несколько Фото. 

 

Апрель 2018г.                                                                                        г.Владивосток

Моя Система 2018. Предусилитель

Для начала я отвечу на парочку часто задаваемых вопросов (ЧАзВО) 🙂 – а зачем в системе предусилитель ? И не противоречит ли добавление дополнительного устройства идее так называемого “короткого” тракта ?

В большинстве случаев, когда в системе несколько источников, а усилители мощности часто модифицируются или меняются –  как минимум внешний коммутатор входов – необходимая вещь. Вариант с пассивным коммутатором – регулятором на практике не очень удобен. Во-первых, из-за необходимости коммутации сигнала после регулятора на вход усилителя, то есть – от устройства с довольно высоким выходным сопротивлением на устройство с высоким входным сопротивлением получаем традиционную проблему с сильной зависимостью звука от характеристик соединительных кабелей. Во-вторых, поскольку на выходе пассивного коммутатора- регулятора уровень сигнала ниже, чем на входе – получаем дополнительный источник наводок в системе. Логично применить после регулятора хотя бы буфер с низким выходным сопротивлением…Ну а если можно (и нужно!) применить буфер, то почему бы не применить усилитель? Помимо решения проблемы с кабелями и наводками, это позволяет более рационально распределить усиление в системе, снизить требуемую входную чувствительность усилителей мощности и, как вариант – применить в их входных цепях лампы с меньшим усилением и большим раскрывом характеристик. Это, в свою очередь – улучшает перегрузочную способность всей системы, уменьшает уровень, улучшает и “стабилизирует” состав искажений при перегрузке. Помимо всего прочего – это удобно для отладки и опробования различных схемотехнических решений, поскольку в этом случае оконечный усилитель мощности можно сделать “короче” на один каскад и при отладке очередной конструкции нет необходимости каждый раз устанавливать в нее регулятор уровня и коммутатор входов.

Таким образом, добавление предусилителя в систему идее так называемого “короткого тракта” не противоречит. При этом, как показало дальнейшее развитие событий – “короткий тракт” это в лучшем случае всего лишь “достаточное” условие, а отнюдь не необходимое.

Итак, схема предусилителя — Он идентичен усилителю Zen Guru, за исключением того, что в качестве регуляторов применены трансформаторы от компании Silk Audio. Применение трансформаторных регуляторов вызвано тем, что они у меня  были и я хотел их испытать. В отладочном варианте я установил все переключатели, рекомендованные схемой включения Silk–>> System_2018_Silk. Опыт показал, что эти переключатели – лишние и их применение не дает никакой практической пользы. В частности, практическая реализация “разрыва общей земли” на практике не работает без балластных резисторов, шутирующих первичную обмотку и скорее приведет к росту паразитных наводок и помех, а не к их уменьшению. Параллельная коммутация первичных полуобмоток (+6dB) в данном конкретном случае – так же не имеет смысла, поскольку усиления в системе вполне достаточно и без этого, а уменьшение в 4 раза приведенного входного сопротивления вызывает некоторые сомнения в целесообразности такой коммутации.

Исходя из опыта владения трансформаторным регулятором Django я сделал вывод, что для “звука”  применение регулирующих трансформаторов несколько улучшает ощущение “динамики” и “подвижности” на малых уровнях сигнала, что в общем-то для домашнего аудио при прослушивании музыки через акустические системы – не очень-то актуально. 🙂 И, кстати – как показали мои дальнейшие “изыскания” – низкоомный резистивный регулятор, нагруженный на входной трансформатор, дает аналогичный эффект при гораздо меньшем уровне наводок и помех. Для внимательных читателей – в большинстве моих усилителей регулятор уровня построен именно по такой схеме.

Тем не менее, я таки применил трансформаторный регулятор – в основном из-за тяги к схемотехническим квестам-приключениям. Не могу рекомендовать такое решение для повторения, особенно начинающим аудиостроителям – “подводных камней” в нем значительно больше, чем практической пользы для звука. Кроме того, я смонтировал предусилитель на шасси Hammond c деревянной окантовкой, то есть фактически без экрана. Это была вторая часть схемотехнического квеста – и я так же не рекомендую ее к повторению. Эстетически шасси выглядит довольно привлекательно, но на практике – не удобно в обработке и не оптимально для монтажа. Применение закрытого стального шасси с деревянными накладками – более рационально.

Несколько Фото. 

 

И конечно, светлые шурупы крепления разъемов позже были заменены на черные. 🙂

Апрель 2018г.                                                                                        г.Владивосток

Весьма хороший усилитель

После Корректора ко мне на осмотр (просто на “всякий случай”) попал и усилитель от того же мастера.

С первого же прослушивания усилитель мне очень понравился –  пластичный, “льющийся” звук с прекрасными тембральными оттенками, четкой сценой, в которой удивительным образом текучесть музыкальных образов сочетается с объемностью их расположения в пространстве. Сцена, формируемая усилителем – именно такая, как мне нравится – кажущийся источник звука располагается между АС, сцена немного выходит вперед за плоскость расположения акустики и на заднем плеане – уходит в глубину. Если бы в комнате было несколько пар АС, то было бы трудно определить, какая пара подключена к усилителю в настоящий момент. В общем – отличная конструкция.

Усилитель разработан так, что в качестве выходных можно установить лампы как 45, так и 2A3. При этом при установке 2А3 необходимо переключить тумблер “45/2A3”, который, по всей видимости коммутирует элементы схемы, корректирующие режимы работы выходного каскада.  Как я упоминал ранее, акустика, в комплекте с которой работает этот усилитель – Audio Note, с чуствительностью около 89 dB.  Для такой акустики мощности усилителя на классических 45-х лампах – маловато, более мощная 2A3 или современная мощная версия 45-ки подошли бы лучше. Поэтому было принято решение “для “профилактики” посмотреть что и как, проверить комплектацию, уточнить режимы работы выходного каскада и возможность их подстройки в нужном направлении.

Несколько фото —

Схема конструкции —

Усилитель построен по классической двухкаскадной схеме на триодах. Первый каскад выполнен на интересном “право-левом” триоде 6AC5GT, в усилителе эта лампа работает без сеточных токов и с отрицательным напряжением смещения. В таком режиме 6AC5GT аналогична многим другим триодам малой мощности с высоким коэффициентом усиления и высоким внутренним сопротивлением.

Связь между каскадами – емкостная, в качестве межкаскадного конденсатора применен отличный пленочный конденсатор Mundorf MCap Supreme Silver/Oil.

Выходной каскад выполнен по схеме с фиксированным регулируемым смещением, в качестве выходного трансформатора применен высокачественный трансформатор Hashimoto H-203S в варианте коммутации первичной обмотки 2.5K. “Нижний” вывод вторичной обмотки не соединен с общим.

Выпрямитель анодного напряжения выполнен на кенотроне, по схеме RCLC, напряжение на выходе фильтра регулируется выбором номинала составного балластного резистора Rба1Rба2, номинал которого выбирается переключением тумблера. Выпрямитель напряжения смещения выполнен на полупроводниковом диоде, напряжение на выходе выпрямителя подстраивается выбором номинала балластного резистора Rбс и сглаживается-фильтруется конденсатором емкостью 220uF, для каждого из каналов на выходе фильтра установлен свой переменный резистор, движок которого зашунтирован кондесатором емкостью 220uF. Таким образом “верхняя” часть переменного резистора и конденсатор образуют дополнительный фильтр напряжения смещения. На первый каскад напряжение питания подается через дополнительный RC фильтр, при этом по какой-то причине RC фильтры правого и левого каналов оказались конструктивно перепутаны между собой.

Схемотехническое решение блока питания вызвало у меня ряд вопросов. Во-первых, если уж применять балластный резистор, то лучше включить его между средним выводом вторичной обмотки и общим, кстати в этом случае как вариант – при необходимости с него можно “снять” напряжение смещения. Во-вторых, если построить выходной каскад немного иначе, то можно более рационально распределить напряжение источника питания и обойтись без переключателя номинала балластного резистора.  При этом входной каскад получит большее напряжение питания, что в случае с лампой 6АС5GT только улучшит его линейность и повысит максимальный размах напряжения на его выходе. В-третьих – не стоит применять конденсаторы большой емкости в фильрах напряжения смещения, так как в этом нет никакого практического смысла. Сетка выходного триода не потребляет ток, поэтому при больших емкостях конденсаторов фильтра установление выбранного регулятором уровня напряжения смещения происходит с некоторой “задержкой” (иногда до нескольких секунд), что очень неудобно. В-четвертых – регуляторы напряжения смещения интуитивно – логично присоединять в схему таким образом, чтобы при вращении ручки регулятора по часовой стрелке ток покоя каскада увеличивался и конечно, требуется некоторое минимально – защитное ограничение, чтобы при слишком быстрой регулировке напряжение смещения невозможно было бы установить равным нулю.

Относительно присоединения нижнего вывода вторичной обмотки к “общему”. Как известно, выходной трансформатор обладает таким паразитным свойством, как межобмоточная емкость. Первичная и вторичная обмотки образуют обкладки конденсатора.  При подключении первичной обмотки (первой обкладки конденсатора) к источнику анодного напряжения, на вторичной обмотке (второй обкладке конденсатора) наводится потенциал высокого напряжения. Емкость этого паразитного конденсатора сравнительно небольшая, но если коснуться рукой неизолированной клеммы акустики и корпуса усилителя – то легкий удар током будет вполне ощутим. Мне кажется, что это хоть и способствует обретению некоторой внимательности и “бодрости духа” , но как-то не очень правильно 🙂  Звуковые проявления, возникающие при отсоединенной от “общего” нагрузки вторичной обмотки выходного трансформатора обсуждались на Аудиопортале и форуме А.М. Лихницкого лет 8…10 назад. В самом общем случае – не все так однозначно и, выражаясь в терминах Анатолия Марковича – “…Определенно, есть некая ЭЗОТЕРИЧЕСКАЯ взаимосвязь между номиналом резистора утечки сетки, приведенным сопротивлением анодной нагрузки, организацией смещения лампы выходного каскада, необходимостью шунтирования конденсаторов фильтра питания и присоединением вторичной обмотки выходного трансформатора на общий…” 🙂

В итоге – несколько фото – 

А вот схема с внесенными мной изменениями – 

Первый каскад остался без изменений. В выходном каскаде я применил кобинированное смещение. Это позволило отказаться от тумблера -переключателя “45/2A3”, сделало режим выходного каскада более стабильным, а регулировку тока покоя – более быстрой и логично-простой. Точку соединения “общего” питания и корпуса шасси, а так же способ соединения плюса конденсатора выпрямителя напряжения смещения с общим я оставил без изменений. С учетом “Эзотерической Взаимосвязи” я увеличил номинал резистора утечки сетки лампы выходного каскада, скоммутировал выходной трансформатор на анодную нагрузку 3.5К, присоединил “нижний” вывод вторички на общий  и убрал шунтирующие конденсаторы 🙂  В блоке питания – необходимый номинал балластного резистора стал значительно меньше, что в лучшую сторону повлияло на “динамические” характеристики звучания усилителя, а при комбинированном смещении необходимости в переключении номинала балластного резистора при замене ламп выходного каскада – нет. Так же я немного доработал схему выпрямителя и фильтра напряжения смещения, что улучшило плавность и логику регулировки. И таки да – я установил дополнительную клемму для подключения второго щупа мультиметра при измерении тока покоя. 🙂  Для 45 лампы ток покоя выходного каскада остался прежним ~ 30…33mA. При установке лампы 2A3 ток покоя нужно увеличить до 50…55mA. Все основные характеристики усилителя изменились незначительно, звучание сохранило все прежние особенности, но с некоторым улучшением “динамики”. Скажу так – помимо высокодуховных и высокоинтеллектуальных произведений Рихарда Вагнера, Софии Губайдулиной, Альфреда Шнитке и Арво Пярта этот усилитель вполне уверенно и весело отигрывает и ZZTop 🙂

Февраль 2018 г.                                                                  г.Владивосток

Весьма своеобразный корректор

На прошлой неделе ко мне на “осмотр” попал таки весьма своеобразный корректор. Конструкция от известного подмосковного мастера была приобретена счастливым владельцем несколько лет назад и за все это время из нее так и не удалось “извлечь” сколь-нибудь интересного звука. Система, в которую был инсталлирован этот корректор – вполне хороша – акустика Audio Note, однотактный усилитель на 45-х (или 2A3) триодах, стол Nottingham  c прекрасным набором тонармов и картриджей. Тем не менее – система не “звучала”, звук был плоский, зажатый и обогащен сибилянтами. При этом с CD – проигрывателя звук был существенно лучше, чем с винила – что, конечно – на мой взгляд уже весьма странно и подозрительно. 🙂 В ситуации обязательно нужно было разобраться.

Итак, вот эта конструкция – несколько фото — 

С первого взгляда на печатную плату мне стало как-то свосем нехорошо и причиной этого был вовсе не печатный монтаж. 🙂  А после того, как я срисовал схему – мне стало совсем плохо. НЕ ОЖИДАЛ.

Схема — 

Итак, в основу конструкции положен известный классический корректор Marantz-7 построенный по принципу активной коррекции, то есть как усилитель с большим коэффициентом усиления, охваченный глубокой петлей частотнозависимой общей ООС. В случае с Marantz такое схемотехническое решение было вполне оправданно – во первых, тогда так было “модно”, во – вторых глубокая ООС позволяет получить и стабилизировать заданные характеристики коректора даже при разбросе лараметров ламп а так же при их старении, что очень немаловажно для серийно выпускаемого изделия. На “вредоносное” воздействие ООС на звук во времена разработки Marantz-7 никто внимания не обращал. 🙂

Но “подмосковный” вариант был более чем оригинален – исходный усилитель с большим коэффициентом усиления остался практически без изменений, а RC цепи коррекции сделаны пассивными и включены на выходе усилителя, перед выходным каскадом – катодным повторителем. Первый вопрос, который у меня возник практически сразу же – а как же перегрузочная способность? К сожалению, измерения подтвердили мои самые худшие ожидания.

Форма и уровень сигналов на выходах корректора, входной сигнал 5mV@1000Hz. Пока все выглядит вполне пристойно.

А вот осциллограммы сигналов в различных точках схемы при различных уровнях входного напряжения. Подробности читайте в комментариях к фото.

Результаты измерений вполне очевидны – вся конструкция в целом и второй каскад в частности начинает перегружаться уже при напряжении на входе корректора = 15mV, что совершенно недостаточно.

Исходя из усредненных справочных данных наиболее распространенных моделей ММ звукоснимателей, номинальным уровнем входного сигнала для проведения измерений и снятия характеристик можно считать напряжение 5mV @1000Hz. При этом – если предположить, что уровень ВЧ на грампластинке записан по 0dB, то на частоте 20 kHz номинальный уровень входного сигнала  будет ~ 50mV, то есть корректор должен обеспечивать запас перегрузочной способности по входу не менее +20dB. 

По данным исследования Shure абсолютный максимум музыкального сигнала, когда-либо записанного на долгоиграющей пластинке, составляет 38 см/c на частоте 2 kHz; на низких и высоких частотах рекордные уровни спадают до 26 см/c на 400 Hz и 10 см/c на 20 kHz. Помимо этого, например в известной статье — Douglas Self. Design of moving-coil head amplifiers // Electronics & Wireless World 1987 №12 — рассуждения автора приводят к выводу, что максимальный среднеквадратичный уровень входного напряжения сигнала, на который нужно ориентироваться при конструировании винил корректора, должен быть равен не менее 64 mV (40 см/c при чувствительности 8 mV@1000Hz)

Таким образом, корректор не обладает сколь-нибудь значительным запасом по перегрузочной способности что, собственно и проявляется в его характерном звучании – зажатом,ограниченном и тусклом. Помимо принципиально неверного схемотехнического решения в схеме  остался ряд “атавизмов”  от Marantz – незашунтированный резистор в катоде лампы первого каскада (в оригинальной схеме на него заводилась петля ООС) и несколько странно выбранный номинал сеточного резистора первого каскада, который определяет входное сопротивление корректора. Вместо общепринятого стандарта в 47 кОм по какой-то причине был установлен резистор в 100 кОм. Номиналы цепей корреции так же вызывают некоторые вопросы, так как измерения выявили несоответвие (до +- 2 dB) АЧХ корректора кривой RIAA как в области низких (20….100 Hz), так и в области высоких (10….20 kHz) частот.

Блок питания корректора построен по линейно-стандартной схеме – выпрямитель со средней точкой, многозвенный RCRCRCRC фильтр питания.  Накалы ламп питаются выпрямленным и стабилизированным напряжением постоянного тока.

Схема Блока Питания — 

Ну, что-же – это значит, что конструкция явно нуждается в доработке и, к счастью – если доработать блок питания, перекоммутировать несколько дорожек на печатной плате корректора и поменять местами несколько резисторов – можно получить принципиально лучший результат даже без существенного изменения номиналов деталей. *** обозначения B1 и B2 нужно поменять местами *** 

Вот новая, улучшенная схема корректора — 

Как видно, я собрал вполне “классический” вариант лампового корректора на триодах с сосредоточенной пассивной коррецией, включенной между первым и вторым каскадами. В качестве выходного каскада – “буфера” применен катодный повторитель. Я более точно пересчитал номиналы цепей коррекции, применил в цепях коррекции и на выходе конденсаторы другого типа, а так же уменьшил номинал выходного конденсатора. С учетом того, что как правило входное сопротивление усилителя мощности составляет около 50 кОм, емкость выходного конденсатора вполне разумно ограничить номиналом 2.7….4.7uF. Помимо уменьшения переходных процессов при включении, выбор сравнительно небольшой емкости позволяет ограничить уровень инфранизкочастотных помех, проникающих на вход усилителя мощности.

Блок питания — 

В блоке питания я изменил номиналы нескольких фильтрующих резисторов, что позволило более эффективно распределить напряжение питания между каскадами. Для того, чтобы снизить вероятность пробоя между накалом и катодом лампы выходного каскада я добавил цепь “подъема” потенциала цепи накала над общим. 

Несколько фото и осциллограммы сигналов —

Как видно из результатов измерений –  перегрузочная способность корректора существенно (в 10 раз) 🙂  улучшилась (см. последнее фото – 150mV на входе вместо исходных 15 mV),  что больше рекомендованной Douglas Self примерно в 2,5 раза 🙂  Это значит, что звучать такой корректор будет чисто, свободно, открыто, динамично, объемно и воздушно. Уровень искажений – очень низкий, устойчивость к “щелчкам” – черезвычайно высока. Отклонение АЧХ от кривой RIAA в области НЧ – не более 0.3dB, в области ВЧ (12…20 kHz) не более 0.7 dB.

На сегодняшний день конструкция была прослушана в трех весьма качественных сетапах и показала себя очень достойно. Конечно, до LCR корректора по звуку она явно не “дотягивает”, но среди обычных-классических RC корректоров на триодах эту конструкцию вполне заслуженно можно считать одной из оптимально-лучших.

Январь 2018 г.                                                                       г.Владивосток.

“Солнечный Удар” или еще один Универсальный Усилитель

На известном форуме, посвященном наушникам и усилителям меня довольно часто спрашивают – “… а можно ли сделать такой вот простой и недорогой усилитель на лампах, чтобы к нему подключались как обычные, так и электростатические наушники, причем одновременно?”. Когда я слышу такой вопрос, то обычно мне вспоминается довольно забавная книжка М.Веллера “Всеобщая теория всего” – и я отвечаю – ” Нет, просто и недорого – вряд ли получится, поскольку требования к усилению – совершенно разные, как минимум нужно изготавливать специализированный выходной трансформатор, как-то переключать и подстраивать источник питания и т.д. и т.п.”

Лето в этому году выдалось довольно жаркое и на очередной запрос об “универсальном недорогом усилителе для всего” – я вдруг, вероятно немного перегревшись на солнце – совершенно неожиданно ответил – “ДА. Такой усилитель сделать можно –  и, более того, помимо наушников, к нему еще можно будет подключить и АКУСТИКУ” 🙂  Сказал как отрезал (с) – значит нужно делать… Если недорого,то – советские лампы, тор в питании, простые, но хорошие выходные трансформаторы. Никакой эзотерики – только здравый смысл, техническая простота и эффективная оптимальность.

Вот результат – 

Основные технические характеристики  —

  • Входное сопротивление >= 10 кОм
  • Выходное сопротивление =< 1.2 Ом (выход для подключения акустики), <=
    2 кОм (выход для подключения электростатических наушников
  • Минимально допустимое сопротивление нагрузки – 4 Ом (выход для
    подключения акустики)
  • Номинальный диапазон подключаемых нагрузок – 8 Ом….1 кОм (выход для
    подключения динамических и изодинамических наушников)
  • Максимальное выходное напряжение на эквиваленте нагрузки 100 Ом >= 10V (RMS) (на канал, выход для подключения изодинамических и динамических наушников)
  • Максимальная выходная мощность на эквиваленте нагрузки 4 Ом >= 12 Вт (RMS) (на канал, выход для подключения акустики)
  • Максимальное выходное напряжение на эквиваленте нагрузки 100 кОм  > = 400V RMS, 1120V peak-to-peak. (на канал, на выходе для подключения
    электростатических наушников)
  • Напряжение BIAS = +580V (стабилизированное)
  • Полоса пропускания в режиме “большого” сигнала (Сопротивление нагрузки
    = 4 Ом, уровень выходного напряжения = 0.707 от максимального) не уже
    – 19 Гц…..28 кГц при неравномерности не более 1 dB
  • Коэффициент гармоник на частоте 1 кГц, измеренный в режиме “большого”
    сигнала (см выше) =<0.5%
  • Уровень шумов и помех на выходе усилителя, при закороченном входе и
    при подключении к питающей сети через регенератор с заземлением =<
    200uV

Схема Усилителя:

Комментарии к схеме: Клеммы для подключения акустических систем присоединены на общий и на отводы от вторичной обмотки выходного трансформатора, помеченные “Х” (4 или 8 Ом, выбирается при сборке). Входной и Фазоинверторный каскады особенностей не имеют, режим работы и сопротивление нагрузки Raa выходного каскада выбраны таким образом, чтобы он гарантированно работал в классе “А”. Лампы выходного каскада обязательно должны быть тщательно подобраны в идентичные по параметрам пары, это очень важно для получения максимального размаха выходного напряжения, минимизации искажений и получения низкого уровня шумов и помех на выходе. Для стабилизации усиления и режимов работы усилитель охвачен неглубокой общей ООС. Я не привожу точную маркировку трансформаторов, конденсаторов, диодов, транзистора фильтра блока питания и стабилитронов – “продвинутому” DIYer’у не составит труда догадаться – тем более что такие же компоненты я многократно применял и в других своих конструкциях. 🙂

Июль-Август 2017 г.                                                                              г.Владивосток

Правильный Комплект. Предусилитель и Корректор.

Как – то на одном из форумов промелькнула тема – “Правильному усилителю – правильную акустику”.  А я скажу вот что – “Правильному усилителю – правильный предусилитель”.

Чем же ваш предусилитель так “правилен?” – спросите вы меня. И будете по-своему правы. 🙂

Функционально предусилитель состоит из трех блоков – блок питания, блок RIAA корректора и, собственно – каскада предусилителя с регуляторами уровня и коммутатором входов. Для уменьшения наводок и для большего удобства расположения в стойке с аудиооборудованием блок питания выполнен в отдельном корпусе. 

Схема блока питания – вполне традиционна для моих конструкций и каких-либо особенностей не имеет. Все питания – стабилизированы, выпрямитель – на полупроводниковых диодах – в качестве регулирующего элемента применен биполярный транзистор. Напряжение для питания накала – выпрямленное и стабилизированное. 

Блок предусилителя – схемотехнически эквивалентен усилителю “Zen Guru” и на сегодняшний день я считаю такое решение лучшим для предусилительного каскада. В этом варианте предусмотрены только RCA входы и выходы, без развязывающего балансного трансформатора на входе. Выходные трансформаторы – Hashimoto, лампы – Zenith 6J5GT 50-х годов. Регулятор уровня – Gold Point, на базе переключателей ЕLMA и резисторов KOA Speer – на мой взгляд – это оптимально лучшее решение как по надежности, так и по звуковым характеристикам.

Несколько слов о RIAA корректоре.  В ходе обсуждения конструкции было решено, что корректор, во-первых должен вносить по-возможности минимальный окрас в общий звуковой почерк, обладать отличной разрешающей способностью, ясностью во всей полосе частот и стабильные звуковые характеристики – “сцена” не должна “плавать” в зависимости от спектрального состава и громкости воспроизведения. Думаю, что в меру своих сил и в рамках выделенного бюджета 🙂  я вполне справился с поставленной задачей. Корректор побывал на нескольких прослушиваниях в аудиосистемах очень высокго класса и всегда отмечались как исключительно четкая проработка тонкостей ритмической составляющей музыки, так и четкость, стабильность сцены, эшелонирование музыкальных инструментов и голосов исполнителей. Пожалуй, что для записей “старого” джаза “эшелонирование” даже слишком хорошее, например вполне очевидно слышно, что соло на ударных в “Take Five” Dave Brubeck (примерно 3-я минута) на записи “приближено” звукооператором, а в “Our Love Is Here To Stay” слышно, что Ella и Louis располагались в студии на некотором расстоянии…

По схеме:   

Два каскада на лампах 6AC7 в триодном включении. В качества анодной нагрузки я применил интегральные источники тока, такое решение позволило получить максимальное усиление при очень низком уровне гармонических искажений, который растет очень незначительно при увеличении амплитуды выходного сигнала до начала его ограничения. Первый каскад – с источником тока в качестве анодной нагрузки, второй каскад – так называемый “гибридный” SRPP. В частности, приведенный на схеме каскад имеет коэффициент усиления 42,  выходное сопротивление ~ 800 Ом, максимальный размах выходного напряжения на нагрузке 10 кОм ~ 36V rms,  при этом коэффициент гармоник составляет не более 0.3%.  Цепь коррекции включена между каскадами, в качестве элементов коррекции я применил рулонные полистирольные конденсаторы и carbon film резисторы, межкаскадный конденсатор – металлобумажный, выходной – составной из включенных параллельно пленочного MKP и металлобумажного конденсаторов. Естественно, лампы  для корректора пришлось тщательно отбирать как по микрофонному эффекту, так и по требуемому усилению и искажением. У меня получилось подобрать две подходящие пары примерно из 30 шт. Конструктивно сокеты ламп первого каскада размещены на монтажных панелях с виброразвязкой, остальные сокеты – на верхней стороне шасси. В этой конструкции я отошел от типичной монтажной схемы корректоров “общая шина от входа до выхода”. Для минимизации наводок оказалость более правильным не объединять общий с корпусом на клемме заземления возле входных разъемов, а протянуть от клеммы отдельный провод и соединить общий с корпусом возле первого каскада.

В целом – построение корректора  по схеме двух последовательных каскадов, нагруженных на источники тока – мне кажется перспективной в смысле “звука” идеей которую, на мой взгляд – например точно имеет смысл опробовать на “наших” лампах 6С45П, отзывы о звуковых характеристиках которых весьма противоречивы. Мне кажется, что в этом случае 6С45П могут раскрыться с очень неожиданной стороны.

Октябрь 2017г.                                                                      г.Владивосток

Правильный Комплект. Усилитель+Акустика.

В этот раз я решил начать статью с фото Правильного Комплекта –

Акустика.

Была  поставлена задача придумать и изготовить более-менее компактую напольную акустику на основе 8″  ШП динамика от Decware – DFR-8. Интересные замечания об их особенностях можно прочитать здесь. По факту, DFR-8 это прилично модифицированный Fostex FE-206En, так что и купленая в Decware пара приехала в коробках от Fostex. 🙂  Модификация  делает звучание более ровным, “спокойным” и тонально собранным в области СЧ.  После пробного прослушивания динамиков, установленных в “тестовые” ящики было принято решение сделать двухполосный вариант – широкую СЧ ВЧ полосу с поддержкой в области НЧ. 

Я решил, что индивидуальные особенности, характерные для динамиков Decware следует сохранить и нет необходимости в выравнивании AЧХ в “ноль”. Во-первых – по мере эксплуатации динамики будут “прогреваться” и тональный баланс будет меняться. Во- вторых, для домашней акустики нет смысла усложнять корректирующие фильтры – в большинстве случаев при усложнении фильтров звук становится тонально ровным, но “вялым” и не таким “живым”. 🙂 В-третьих, динамики от Decware имеют свой индивидуальный почерк который очень интересен и без излишней коррекции. Безусловно, без коррекции “в ноль” некие звуковые артефакты будут присутствовать (как впрочем и у любого ШП) – но на мой слух по существу они не принципиальны. Вот набор АЧХ DFR-8 установленного в “тестовый” закрытый ящик объемом ~ 50 литров, последовательно снятых в процессе подбора элементов фильтра (зеленый график – без корректирующего фильтра). ZЧХ в свободном пространстве и в корпусе с ПАС – 

В итоговом варианте я применил обычный выравнивающий LR фильтр, совместив его параметры с компенсацией baffle step. Акустическое оформление CЧ ВЧ звена – Flow Resistor (ПАС), на мой взгляд такой вариант оформления позволяет хорошо демпфировать НЧ резонанс подвижной системы при умеренном увеличении резонансной частоты, обеспечивая необходимую перегрузочную способность и снижение нелинейных искажений в области НЧ. 

В качестве HЧ динамиков я применил 10″ Audax PR240MO в оформлении “Classic Bass Reflex” – то есть с портом, рассчитанным исходя из максимальной эффективности при минимальной длине. При этом эффекты, характерные для длинных портов (резонансы внутри трубы, шум от движения воздуха и задержка отклика) – отсутствуют. Максимальная эффективность не всегда бывает наиболее оптимальна для “любой” комнаты для прослушивания и для снижения эффективности предусмотрены два варианта. Во-первых, можно установить более длинный порт, это снизит частоту оформления и отдачу в диапазоне частот 40…60 Гц. Во-вторых, в отверстие порта можно установить Flow Resistor (такой же, как применен в СЧ ВЧ звене – по диаметру он подходит точно) – в этом случае НЧ оформление становится ПАС с частотой настройки в районе 48…55 Гц. Последний вариант обычно позволяет получить ровное звучание в области HЧ даже в акустически сложной комнате. Вот ZЧХ Audax PR240MO в свободном пространстве и корпусе Classic Bass Reflex.

По фильтру- кроссверу

Первоначальный “гладкий” вариант –

  Итоговый вариант –

Чертеж корпуса – со всеми заметками, сделанными в мастерской  🙂 – 

Установка и расположение акустики

В качестве ножек я обычно рекомендую шипы + пятаки. Для акустики, которая устанавливается стационарно на обычном полу – это наиболее оптимальное решение, при этом желательно устанавливать акустику на небольшие “островки” из МДФ, фанеры или массива с площадью, чуть большей площади основания. Шипы регулируются по высоте и позволяют установить акустику ровно и надежно. Для крепления шипов я применяю стандартные резъбовые втулки M6, поэтому при желании вместо них можно установить стандатные жесткие резиновые ножки для “сценического” оборудования с креплением на винтах.

Выход НЧ порта на задней стороне  предполагет расположение акустики на некотором расстоянии от стен, оптимальное место установки нужно выбрать исходя из общеизвестных рекомендаций. Шипы желательно установить уже после выбора места установки, в процессе установки акустику удобно передвигать по полу на небольших пластиковых ковриках (aka “коврик туриста”). Я рекомендую устанавливать акустику “прямо”, то есть без разворота в сторону слушателя. В этом случае “сцена” наиболее естественно формируется в глубине пространства между АС и тональный баланс наиболее ровен. Итоговая АЧХ, снятая в реальной комнате:

Усилитель

По схемотехнике – стандартная (для меня) схема двухтактного усилителя, примерно аналогичная усилителю из статьи про “Кармический долг”, только выходные лампы – NOS 6V6G , входная лампа и лампы драйверного (ФИ) каскада – NOS 6SN7. Режим выходного каскада – ультралинейный, для стабилизации коэффициента усиления усилитель охвачен неглубокой ООС. Все трансформаторы – Hashimoto. Схема блока питания особенностей не имеет – двухполупериодный выпрямитель + стабилизатор и фильтр анодного напряжения на мощном полевом транзисторе. Переключатель сверху передней панели – на три положения – левое и правое положения показывают на стрелочных индикаторах величину тока покоя пар ламп левого и правого каналов. Среднее положение (основное) – отключает индикаторы. 

Основные характеристики усилителя – 

  • Входное сопротивление = 10 кОм
  • Выходное сопротивление =< 0.47 Ом 
  • Номинальное входное напряжение = ~1V RMS
  • Номинальная нагрузка = 4 и 8 Ом (Стандартно = 8 Ом)
  • Номинальное выходная мощность = 8.5W RMS
  • Коэффициент усиления ~ 8
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<200uV (“взвешено” по кривой “A”)
  • Полоса воспроизводимых частот при номинальной выходной мощности18 Гц…48кГц с неровномерностью не более 0.5dB. Измерено на эквиваленте нагрузки сопротивлением 8 Ом.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 8 Ом при номинальном выходной мощности <= 1%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -20 dB. Измерено на эквиваленте нагрузки сопротивлением 8 Ом.

Несколько фото Правильного Комплекта в Системе-

 

Июль 2017г.                                                                            г.Владивосток

Отданный “кармический долг” или долгожданный upgrade

Случилось так, что пару лет назад я изготовил ламповый усилитель для моего хорошего знакомого – Владимира, меломана с почти 50-летним стажем.   Усилитель был двухтактный, в качестве выходных ламп я применил KT88, выходные трансформаторы – Hammond, а в качестве силового был применен мощный специализированный тороидальный трансформатор Antek.  К моему глубокому сожалению, усилитель хоть и был своевременно отдан заказчику и вызвал много восторгов, но я не мог считать этот проект удачно завершенным. Во-первых, компания Antek “подвела” с декоративным стальным кожухом для трансформатора, из-за особенностей крепления которого трансформатор было невозможно надежно зафиксировать внутри. “…Что может быть тревожнее плохо закрепленного силового трансформатора…”. Во-вторых поставщик выходных ламп вдруг совершенно неожиданно меня подвел – прислал не подобранные в пары KT88 с каким-то  странным дефектом цоколей – очень хрупким центральным “ключом”. С “ключами” я ёщё как-то справился, а вот из-за не подобранных в пары ламп пришлось в выходном каскаде применить регулируемое смещение. Все было бы хорошо, но только вот силовой трансформатор я выбрал исходя из того, что выходной каскад будет работать с автоматическим смещением, то есть для варианта с фиксированным смещением напряжение источника питания было “немного” высоковато – примерно вольт на 60 больше требуемого. Поэтому желаемого режима работы выходного каскада в таком варианте конструкции мне добиться не удалось.

Тем не менее усилитель был отдан Владимиру, а я в свою очередь пообещал, что чуть позже подвезу другой кожух трансформатора, нормальные лампы и переделаю усилитель так, как было задумано.

Шли Годы… Усилитель прекрасно работал. И вот тут по случаю мне достается редкий набор NOS локтальных ламп – 7С5, 7N7, 7F7 выпуска 40-х..50-х годов. На этих замечательных лампах просто обязательно нужно было сделать что-нибудь интересное. Совпало так, что у меня случилась пара относительно свободных недель и я вспомнил о невыполненном до конца обещании, о Кармическом Долге.

Переговоры с Владимиром был продуктивны – было решено не только “проапгрейдить” (а по факту – полностью переделать) усилитель, но и изготовить дополнительный блок – коммутатор источников и предусилитель, который был бы еще и усилителем для высокоомных наушников. 🙂

Так и появился этот замечательный комплект – Предусилитель и Оконечный усилитель мощности на Локтальных Лампах.

Схема Предусилителя —  Справочные данные ламп — 7C5_ 7N7.  

В предусилителе два каскада, первый – усилитель напряжения, второй – усилитель тока (повторитель напряжения). Подстроечные резисторы последовательно с регулятором уровня служат для выравнивания усиления по каналам. Поскольку предполагается, что предусилитель и усилитель мощности будут соединены постоянно, а при прослушивании музыки через наушники усилитель мощности будет просто отключен от сети, то для уменьшения взаимного влияния устройств второй каскад “продублирован” – для выхода на высокомные наушники добавлен более мощный повторитель на лампе 7С5 в триодном включении. В качестве катодной нагрузки в мощном повторителе я применил интегрированный источник тока, по сравнению с резистором расчетного номинала это позволило уменьшить выходное сопротивление каскада до 120 Ом и увеличить размах напряжения на нагрузке. При сопротивлении нагрузки 300 Ом коэффициент “усиления” по напряжению этого каскада = ~ 0.5, максимальный размах выходного напряжения ~ 5V rms. Естественно, при более высокоомной нагрузке коэффициент усиления каскада приближается к 1, а максимальный размах выходного напряжения – к ~ 50V rms. Несколько слов о примененном мной регуляторе  (R2) – это довольно интересная конструкция ступенчатого регулятора на переключателе и дискретных резисторах, которая применялась в предусилителях Aleph от маэстро Nelson Pass. Конструкция немного странная, довольно объемная  – но, тем не менее в ней есть некий шарм, продуманность и надежность. Это помимо отличных звуковых качеств. Обычно критики ступенчатых регуляторов говорят – “слишком много контактов, резисторов и промежуточных паек”. Я почему-то больше доверяю Nеlson Pass – пайки и контакты безусловно имеют место быть, но звуковые свойства таки отличные.

Основные характеристики предусилителя:

  • Входное сопротивление = 15 кОм.
  • Количество входов = 3 (RCA), количество выходов = 2 (1 шт RCA, + 6.3mm Jack для наушников)
  • Выходное сопротивление c выхода RCA =< 1 кОм. Выходное сопротивление с выхода для наушников = ~ 120 Ом
  • Номинальная нагрузка = от 10 (и выше) кОм по выходу RCA и 200 (и выше) Ом по выходу для наушников.
  • Номинальное входное напряжение ~ 0.33V RMS
  • Номинальное выходное напряжение ~ 1V RMS
  • Максимальное выходное напряжение на нагрузке 10 кОм> = 60V RMS (выход RCA)  Максимальное выходное напряжение на выходе для наушников при нагрузке 300 Ом => 5V RMS.
  • Коэффициент усиления ~ 3, может быть раздельно по каналам плавно увеличен до ~ 9.
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<170uV (“взвешено” по кривой “A”)
  • Полоса воспроизводимых частот на выходе RCA при номинальной нагрузке и номинальном выходном напряжении =  5Гц…200кГц с неравномерностью не более 0.5dB. 
  • Коэффициент гармоник на выходе RCA на частоте 1 кГц при номинальной нагрузке и номинальном выходном напряжении <= 0.2%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -36 dB.

Схема усилителя мощности – 

Традиционная (для меня) конструкция, три каскада, выходной каскад на лампах 7С5 в ультралинейном включении. Для стабилизации усиления и некоторого уменьшения выходного сопротивления я применил небольшую общую ООС. Смещение выходных ламп автоматическое, настраиваемое индивидуально. Примерно по такой же схеме собран мой основной домашний усилитель. Конденсаторы С6 и С7  – емкостью 1800uF. Блок питания усилителя схемотехнически идентичен блоку питания предусилителя и особенностей не имеет, за исключением того, что применен силовой трансформатор с напряжениями вторичных обмоток 250+250V@400mA, 3.3+3.3V@8A.

Основные характеристики усилителя мощности: 

  • Входное сопротивление = 91 кОм
  • Выходное сопротивление =< 0.47 Ом 
  • Номинальное входное напряжение = ~1V RMS
  • Номинальная нагрузка = 4 и 8 Ом (Отдельные клеммы)
  • Номинальное выходная мощность = 8.5W RMS
  • Коэффициент усиления ~ 8
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<200uV (“взвешено” по кривой “A”)
  • Полоса воспроизводимых частот при номинальной выходной мощности 27Гц…27кГц с неровномерностью не более 0.5dB. Измерено на эквиваленте нагрузки сопротивлением 8 Ом.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 8 Ом при номинальном выходной мощности <= 1%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -20 dB. Измерено на эквиваленте нагрузки сопротивлением 8 Ом.

Несколько фото – 

Май 2017 г.                                                                                                 г.Владивосток

Возвращаясь к опубликованному. Настройка режимов усилителя STAX SRM-007t

После публикации заметки о переделке усилителей STAX SRM на 220V меня часто спрашивают о методике настройки усилителей STAX SRM и, в частности – о настройке режимов  усилителя SRM-007t  после замены ламп или просто “для профилактики”.  Суть настройки состоит в контроле  постоянного напряжения на выходе и балансе  выходного каскада усилителя.

Минимальное (в идеале – равное 0V) постоянное напряжение на выходе обеспечивает максимальный размах выходного переменного напряжения, а баланс выходного каскада обеспечивает симметрию выходного переменного напряжения и минимальный уровень искажений.

Выходной каскад SRM-007t собран на 4-х двойных триодах 6CG7, триоды каждой из ламп соединены параллельно – и на этом моменте стоит остановиться более подробно. Дело в том, что  соответствующие выводы “половинок” каждой из ламп не просто соединены между собой, а предусмотрена балансировка – подстройка “одинаковости” режима работы каждой из половинок.

Таким образом, последовательность настройки должна быть такой – сначала балансируем “половинки” триодов в каждой лампе, затем балансируем выходной каскад, затем выставляем близкое к “нулю” постоянное напряжение на выходе. Два последних шага – итерационны, то есть для более точной настройки их нужно выполнить несколько раз, обычно удается установить требуемые напряжения за 2-3 “подхода”.

Плата усилителя  выглядит так –

Для Левого (L-CH) и Правого (R-CH) каналов, если смотреть со стороны передней панели последовательно расположены следующие регулировочные резисторы: TVR1, TVR2, TVR4, TVR3.  Рядом с TVR4 расположены две “тестово-измерительные” пермычки “TP2”, а с TVR3 две перемычки “TP1” – они нужны для измерения напряжения на катодах каждой из “половинок” выходных ламп. Рядом с мощными резисторами R27 R28 (47К) расположены две “длинных” перемычки (R-CH и L-CH) – они нужны для измерения выходного напряжения и балансировки выходного каскада. Около конденсаторов блока питания расположена еще одна “длинная” перемычка – это “общий” (0V, GND).

Итак, крышку усилителя нужно снять, щупы вольтметра присоединить, например к TP1, включить усилитель и подождать минут 10, пока установится тепловой режим. Вольтметр покажет что-то вроде –

Потенциометром TVR3 нужно установить напряжение, максимально близкое к 0V. Если этого сделать не удается, то лампу (в данном случае V1) нужно заменить, ее “половинки” слишком сильно различаются по параметрам.

Аналогичные измерения и настройки нужно проделать с TVR4, TP2.

Затем щупы вольтметра нужно переместить на “длинные” перемычки и вращением движка TVR1 установить напряжение, максимально близкое к 0V. 

Затем “черный” (минусовой) щуп вольтметра нужно переместить на “длинную” перемычку в блоке питания и вращением движка TVR2 установить напряжение, максимально близкое к нулю. Нужно отметить, что из-за определенной температурной инерции “ноль” на выходе довольно нестабилен и постоянно “гуляет” в пределах нескольких вольт. Это является особенностью усилителей SRM, согласно данным сервисных инструкций, допустимый диапазон “гуляния” составляет около 15V.

После завершения настроек усилитель следует выключить, на “длинные” перемычки присоединить щупы осциллографа, на вход – подать сигнал с генератора и проверить баланс выходного напряжения по переменному току.  После включения и прогрева усилителя максимальное выходное напряжение (до видимого начала ограничения сигнала)  должно быть не менее 120+120V rms, ограничение должно происходить симметрично и “плавно”.  Уменьшение размаха максимального выходного напряжения и (или) сильный разбаланс напряжений говорит о старении выходных ламп, то есть о том, что их пора менять.

Март 2017г.                                                                             г.Владивосток