Двухтактный усилитель для наушников STAX SR-007

Предварительно этот усилитель был “заявлен” на форуме doctorhead.ru (в теме “Схемотехника усилителей для электростатических наушников”). Здесь – полное описание конструкции.

1. Схема усилителя.

Принципиальная схема усилителя и его блока питания – STAX_Balanced_Triode_001.

Каждый из двух каналов собран по двухтакной схеме, на триодах со средним коэффициентом усиления (драйверный каскад), и на пентодах средней мощности в триодном включении (выходной каскад), без общей ООС. Прорабатывался вариант усилителя и с пентодным включением выходных ламп. Схема этого варианта приведена в конце статьи (*** будет добавлена чуть позже).

Для наглядности на схеме показан только один канал.

Первый (входной) каскад – балансный усилитель на двух триодах по схеме с общим катодом и резистивной анодной нагрузкой. В качестве ламп первого каскада применен двойной триод 6BZ7 (6BQ7), особенностью которого является хорошая линейность при сравнительно небольшом напряжении на аноде. Режим работы первого каскада – ток покоя каждого плеча 6.5…7 mA, напряжение на анодах + 140…+145V.  Напряжение смещения = -2.7…-3.1V.  Лампы для первого каскада должны быть отобраны по идентичности “половинок”.  Коэффициент усиления первого каскада =~15. Для полной «раскачки» выходных ламп необходимо напряжение на их сетках примерно 10…12V rms, таким образом чувствительность усилителя составляет примерно 0.7V rms.

В первом каскадt допустимо применение ламп 6BZ7, 6BQ7, 6DJ8, 6922, E88CC, ECC88, 6Н23П-ЕВ и даже 6Н1П-ЕВ (с некоторым снижением коэффициента усиления).

Второй (выходной) каскад усилителя собран по двухтактной схеме, с раздельным автоматическим смещением выходных ламп. Связь между каскадами – емкостная. Смещение задается резисторами R14, R15 в катодах выходных ламп. По переменному току эти резисторы зашунтированы конденсаторами С4, С5. Ток покоя составляет 27…29 mA для каждой лампы. Нагрузкой является выходной трансформатор, вторичная обмотка которого симметричная, со средней точкой. В качестве выходных трансформаторов применены изделия от компании Lundahl, модели LL1660S/PP, скоммутированные по схеме PP/PP c  коэффициентом передачи  (2.25+2.25):(2+2). Режим работы выходных ламп выбран таким образом, чтобы на нагрузке обеспечивался максимально возможный размах выходного напряжения при минимуме нечетных гармоник. Так как четные гармоники в двухтактном каскаде в значительной степени компенсируются, то при подборе выходных ламп в близкие по параметрам пары это позволяет получить очень низкий общий уровень гармонических искажений усилителя и обойтись без введения петли ООС.

В качестве ламп выходного каскада используются пентоды средней мощности 6GK6,  в триодном включении.  С некоторым ухудшением характеристик и с перепайкой цоколевки можно применить EL84, 6П14П-ЕВ.

Блок питания усилителя особенностей не имеет.

В качестве трансформатора питания и накала использован подходящий по парметрам весьма качественной трансформатор компании Hаmmond.

Накал питается напряжением переменного тока, для уменьшения уровня помех и наводок на накальные цепи, напряжение накала «поднято» над общим примерно на +80V при помощи делителя R12R13.

Анодное напряжение, необходимое для работы схемы, снимается со вторичной обмотки трансформатора питания и выпрямляется кенотроном. Выпрямленное напряжение (+415 V) фильтруется с помощью стабилизатора- электронного фильтра на транзисторе VT1, он же обеспечивает плавное нарастание анодного напряжения при включении усилителя. Напряжение на выходе фильтра = +385 V.  Напряжение BIAS (+580V), необходимое для работы телефонов STAX, формируется с помощью выпрямителя на полупроводниковых диодах VD2,VD3, простейшим стабилизатором на элементах R15ZD2…9,  и фильтром на элементах R16C13.

С предварительно подобранными лампами 6GK6 в выходном каскаде усилитель обеспечивает следующие характеристики –

  • Входное сопротивление = 49 кОм;
  • Выходное сопротивление, не более 2.4 кОм;
  • Максимальное выходное напряжение (на каждом из балансных выходов) = 185V RMS (518V Peak-to-Peak);
  • Номинальное входное напряжение = 700mV RMS;
  • Полоса воспроизводимых частот, при неравномерности +-1 dB и уровне выходного напряжения 100V RMS, на эквиваленте нагрузки сопротивлением 100 кОм = 20Гц…22кГц;
  • Общий коэффициент искажений на выходе усилителя, при уровне выходного напряжения 100VRMS = < 0.5% (Определяется точностью подбора по характеристикам ламп выходного каскада, при установке неподобранной пары ламп одного изготовителя и одной даты выпуска = < 2%);
  • Уровень шумов и помех на выходе усилителя, при минимальном положении регулятора громкости, измеренный на эквиваленте нагрузки сопротивлением 100 кОм = < -65dB;
  • Время выхода на «рабочий» режим после включения, <= 30 мин.

2. Благодарности

Выражаю огромную благодарность SharapOFF за возможность разработать и изготовить для него эту конструкцию, а так же за продуктивное обсуждение особенностей звуковоспроизведения. Выражаю надежду, что этот усилитель будет радовать его своим звучанием на протяжении многих лет.

Октябрь-Ноябрь  2012 года                                                               г. Владивосток

Woo Audio WA5 – взгляд снаружи и изнутри

Пару недель тому назад многоуважаемый и широко известный на doctorhead.ru форумчанин SharapOFF предоставил мне на прослушку усилитель Woo Audio WA5 300B.
Выглядит он так (Фото с сайта Woo Audio) — wa5-wholewa5-frontwa5-back

Комплектация усилителя была топовой – кенотроны Mesh Plate от Sophia Electric, 6SN7 NOS brown plate от Sylvania, тефлоновые панельки с цанговыми контактами, межкаскадные конденсаторы V-Cap, конденсаторы в блоке питания – Jensen, шунтирующие конденсаторы – BlackGate. По “легенде” продавца, этот усилитель был приобретен по случаю, как выставочный экземпляр.
Естественно, ожидания были – весьма волнительными и полный предвкушений, я установил усилитель в свою систему, включил и…
Но сначала о системе.
В качестве CD проигрывателя – Njoe Troeb Reference, межблочники – витая пара из серебряной моножилы в тефлоне + коннекторы Eichmann, наушники – в ассортименте от Sennheiser HD800 и Audeze LCD-3 до Beyer Dymnamics DT150 c custom абушурами и кабелем, купленные по случаю у знакомого на “той самой” студии Abbey Road.
Диски – в широчайшем ассортименте, все оригинальные.
Итак, поставил я свою любимую запись “Времена Года”, одел наушники, и – постигло меня сначала удивление, а потом и горькое разочарование. Звук – зажатый, плоский и какой-то … не ламповый… Выключив систему, я начал было суетливо проверять коммутацию, питание, на всякий случай протер контакты разъемов чистящей жидкостью. Включил снова – нет, лучше не стало. Плоский, зажатый звук – сцена вытянута справа налево, тембры бедные, виолончели (а может быть и скрипки) – фанерные… Звук – лишен эмоций, сухой, скучный и однообразный. А где же знаменитое, открытое и широкое звучание 6SN7 и 300В ? Уж я то точно знаю, как должен звучать усилитель на этих лампах….
Может Woo неисправен ? Заглядываю внутрь —

Еще несколько картинок – внутренности блока питания –

Как видно, выпрямительные кенотроны включены параллельно, накальные напряжения подаются на блок усилителя от отдельного трансформатора. Накал драйверных ламп выпрямлен и стабилизирован (12 Вольт), для формирования напряжения накала выходных ламп в блок усилителя с двух раздельных обмоток подается переменное напряжение 6 Вольт. Мощность накального трансформатора = 30 Вт.
Схема задержки подачи анодного напряжения выполнена на полупроводниковом транзисторном ключе, схеме таймера и реле, фильтрация производится дросселем и отличными электролитическими конденсаторами Jensen емкостью 200 мкФ. Очевидно, что выпрямлению и фильтрации анодного напряжения уделено особое внимание. Необходимость задержки подачи анодного напряжения вызвана не только защитой выходных ламп от броска напряжения при включении усилителя, но и защитой кенотронов от броска тока, возникающего при зарядке фильтрующих емкостей.

Усилитель, Примерная схемаWoo_Sch_Before

Некоторая загадка (?) – это блок переключателя – коммутатора нагрузки, на который заведены все видимые выводы выходного трансформатора, проводники с катодов и анодов выходных ламп, разъемы для подключения телефонов, разъемы для подключения динамиков.
Выглядит он так —

Transformer_Commutation_01

Совершенно ясно, что часть контактов этого переключателя задействована только как вспомогательные монтажные планки. Поскольку на переключатель подается высокое напряжение, его планки покрыты черной каучуковой краской и залиты термоклеем.
При дальнейшем разбирательстве выяснилось, что если бы Woo был без выхода на высоковольтную изодинамику и акустику, то никакой особой необходимости в этом весьма некачественном переключателе не было бы.
Обратите внимание на включение фильтрующих конденсаторов. Фактически, в блоке усилителя оба выходных каскада “питаются” от NoName конденсатора емкостью 10 мкФ. Все красивые емкости Jensen желтого цвета обеспечивают фильтрацию питания исключительно двух каскадов драйвера. На мой взгляд, это существенное упущение, поскольку фактически получается, что по плюсу питания выходные каскады левого и правого каналов объединены и через один проводник и два разъема заведены на “удаленный” фильтрующий конденсатор, расположенный в блоке питания.

Особый интерес представляют выходные трансформаторы —

Впечатлительных аудиолюбителей прошу не пугаться – трансформаторы хоть и выглядят несколько брутально, но вполне качественны. Вторичная обмотка имеет три вывода – общий, для низкоомной нагрузки и акустических систем и для высокоомной нагрузки. Приведенное сопротивление первичной обмотки при нагрузке 8 Ом составляет 2.5 кОм.

Комментарии по схеме драйвера – она напоминает известный усилитель от Sun Audio, на мой взгляд – не лучшее решение для раскачки 300В. Первый каскад работает с небольшим напряжением на аноде (90…100V), анодная нагрузка выбрана сравнительно высокой (62 кОм) ток покоя небольшой (3..3.5 мА). Если взглянуть на ВАХ 6SN7- то это не самый линейный участок для выбора рабочей точки, в зависимости от разброса характеристик ламп спектральный состав и уровень искажений на выходе каскада будет сильно меняться, то есть звук (“tHe sOUNd” :)) будет очень сильно зависеть от замены ламп. Возможно, в этом есть некоторая “фишка”.

Я бы заменил резистор в аноде на 27…33 кОм, в катоде установил бы 470…510 Ом. Напряжение на аноде осталось бы прежним, а ток покоя вырос бы до 5…5.5 мА, рабочая точка переместилась в менее “чувствительную” и более линейную область.
Второй каскад – из-за непосредственной связи с первым каскадом катод лампы второго каскада поднят над общим примерно на 105…108 Вольт. Это напряжение фактически растрачено впустую, поскольку каскад работает с “полезным” напряжением питания, равным разности между напряжением на катоде и напряжением источника питания.
Естественно, это ограничивает возможности каскада по раскачке выходной лампы.
Если уж делать для 300В двухкаскадный драйвер на триодах с малым усилением, то схема Рейчерта, на мой взгляд, более предпочтительна, несмотря на наличие дополнительного межкаскадного конденсатора. Его негативные свойства компенсируются эффективным использованием источника питания и максимальными, для каскада с резистивной нагрузкой, возможностями раскачки выходной лампы.
Но лично я, если есть возможность заменить лампу драйвера, предпочитаю применить один каскад усиления вместо двух.

После вскрытия и осмотра содержимого, естественно, были сделаны некоторые измерения.
При снятых лампах – Напряжение источника питания = 380 Вольт, напряжение накала на 300В = 4.8 Вольт (выпрямленное), напряжение накала на драйверных лампах 12 Вольт (выпрямленное), по 6 Вольт на лампу, накалы соединены последовательно.
Эти данные заставили меня несколько задуматься. Выходные лампы включены с автосмещением, конденсаторы источника питания имеют номинальное напряжение не ниже 450 Вольт. Опять же, заявленные технические характеристики – выходная мощность 8 Вт на канал… Я ожидал на выходе блока питания без нагрузки высокое напряжение не менее 420…440 Вольт.
Устанавливаю выходные лампы, включаю. Напряжение на выходе блока питания = 340(!) Вольт, напряжение накала 300В = 4.3 (!) Вольт, напряжение смещения на катоде = 51 Вольт. Ток, потребляемый усилителем = 140 мA.
Измеряю напряжение сети – все в порядке, обычные 230 Вольт. Измеряю переменное напряжение накала, поступающее с блока питания – все в порядке, 6 Вольт, никакого проседания.
Устанавливаю другой комплект выходных ламп (мало ли что), измеряю напряжение – те же 4.3 Вольт. То есть проблема (или может быть это еще одна “фишка” ?) в выпрямителе накала, а именно в номинале балластных резисторов (0.22+0.22 Ом).

Inside_Before_06

Вынимаю кенотроны из панелек, измеряю напряжение на вторичке сетевого трансформатора. 696 (то есть 348+348) вольт без нагрузки. В принципе, с выпрямителем на высокоомных кенотронах (Ri~180 Ом) и CLC фильтром, напряжение на выходе такого блока питания при номинальной нагрузке должно быть примерно 340…350 Вольт. Все примерно соответствует. (Еще одна “фишка” ?)

После обнаружения таких “фишек” в конструкции я решил спокойно обдумать, что же с этим всем делать дальше. Самый экстремальный план – замену накального трансформатора и трансформатора питания – пока решил не рассматривать. Менее экстремальный вариант – заменить выходные лампы 300B на 2A3 сначала показался мне весьма привлекательным. Дело в том, что для выходного каскада на одноанодных 2A3-36 или 2А3-40 с автосмещением имеющееся напряжение питания – как раз самое “то, что нужно”. Если заменить диоды выпрямителя накала на Шоттки, то появляется достаточный запас для установки регулятора-стабилизатора напряжения накала. Это, кстати, существенно понизит уровень помех, что весьма полезно для усилителя для наушников – и регулировка “центровки” накала ламп выходного каскада в этом случае будет не нужна.
Весьма интересным показался вариант с переводом выходного каскада на фиксированное смещение, и в конструкции для себя я бы остановился именно на нем. В блоке питания вполне достаточно места для установки небольшого дополнительного трансформатора и выпрямителя напряжения смещения. Но – поскольку владелец этого усилителя не хотел бы периодически отвлекаться на подстройку и контроль тока выходных ламп, этот вариант в этой ситуации был признан не совсем подходящим. В ходе дальнейшего осмотра выяснилось, что  накальный трансформатор не имеет достаточного запаса по току, поэтому вариант с 2A3 без замены накального трансформатора не реализуем.

По коммутации- при вскрытии колпака выходного трансформатора выяснился интересный технологический момент. Один из выводов вторички (общий) с внешней стороны был соединен с корпусом через винтовую ламельку. И вообще, я заметил, что собственно “общей шины” или “звезды” в этой конструкции нет. Внутри корпуса там и сям в удобных местах прикручены ламельки, на которые припаяны проводники от различных точек схемы. Вероятно, ради надежности соединения все ламельки объединены неизолированным моножильным проводом. Такая топология разводки общего мне не понравилась.

В итоге, было принято решение пока оставить выходной каскад таким, как он есть. В дальнейшем – установить стабилизаторы напряжения накала и после этого уже определиться – стоит менять выходные лампы или нет. В любом случае, драйвер и коммутацию нужно было переделывать, чем я собственно и занялся.

Убираю ненужное –

Disassembled_01Phone_Socket_Hole_01

Более внимательно разобравшись с коммутатором нагрузки мне стало очевидно, что если установить дополнительное гнездо для высокомных телефонов, то ненадежный многослойный и шумный коммутатор легко заменяется одной переключающей группой — “Включить-выключить акустику”. Под рукой оказался движковый переключатель на три положения, и на первое время я установил его. В ходе переноса и перекоммутации переключателя из усилителя было извлечено примерно 10 метров “лишнего” провода.

Драйвер я решил применить однокаскадный, с учетом режима работы выходного каскада требуемый коэффициент усиления должен быть около 40. Такое усиление легко обеспечивает пентодный усилительный каскад или, например, триодный на лампе с большим коэффициентом усиления. Исходя из имеющихся в наличии ламп и учитывая то, что отверстия под октальные панельки в корпусе уже имелись, я рассматривал два варианта – 6AS7 (6Ж4) или С3g в триодном включении. Пентодный драйвер в данном случае мне показался не совсем уместным. Не поясняя причин, скажу лишь, что если бы этот усилитель был для акустики, а не для телефонов – я бы применил пентодный драйвер.
Переделка заняла всего несколько часов. Конденсаторы в питании были перекоммутированы таким образом, что 100+100 мкФ фильтруют выходные каскады обоих каналов, а на входные каскады питание подается через индивидуальные фильтрующие RC цепочки 1.6 кОм + 100 мкФ.

C3g_and_Socket_01C3g_Installed_01Inside_After_03

Схема усилителя после переделки-

Woo_Sch_After

Напряжение на катоде С3g = 2.8 Вольт, на аноде = 180 Вольт, коэффициент усиления = 35, максимальный размах выходного напряжения ~70 Вольт RMS, коэффициент гармоник при этом составляет не более 3%. Режимы выбраны с некоторым “запасом”, поскольку я все-таки надеюсь несколько увеличить напряжение на выходе блока питания. Чуть позже я попробую установить кенотроны с меньшим внутренним сопротивлением. В этом случае, даже если после приведения накала в “норму” анодное напряжение просядет несколько меньше (при увеличении накала до номинального значения 5 Вольт ток покоя выходного каскада возрастет).

Так выглядит комплект изнутри и снаружи после переделки —

Inside_After_02Inside_After_04Amplifier_and_Power_Supply

 

Февраль-Март 2013 год                                                                     г.Владивосток

Добавлено 16.04.2013

Завершил начатое. На фото ниже – подробности окончательной модификации.

Помимо того, что было сделано раньше – установил два накальных трансформатора вместо одного. Накалы выходных ламп каждого канала теперь питаются от отдельных трансформаторов. Изменил выпрямитель накала – вместо диодного мостика установил выпрямители на быстрых диодах Шоттки + фильтр стабилизатор на микросхеме LT1084.  Конденсаторы фильтра – Elna Tonerex + Panasonic.  С выравниванием напряжения накала (теперь оно точно 5 Вольт) более- менее выровнялся тока покоя выходного каскада – теперь он 75 mA на канал. Заменил кенотроны Sophia Mesh Plate на NOS RCA 5U4 – выпрямленное напряжение значительно выросло, теперь оно = 375 Вольт.
Регулятор Alps заменил на дискретный, на меднооксидных резисторах. Уровень фона на выходе достоверно измерить не удалось (менее 0.2 mV). Даже в высокочувствительных низкоомных наушниках фона не слышно в принципе. Разрешение существенно улучшилось, местами я бы сказал — даже пугающе улучшилось. На мой взгляд, получился отличнейший усилитель. Я доволен проделанной работой.

 

Woo_Power_Supply_New_02Woo_Power_Supply_New_01Woo_Ampr_Filament_New_02Woo_Ampr_Filament_New_01

Апрель 2013 год                                                                               г.Владивосток

Усилитель Zen V. Версия 10.12 (почти окончательная)

Как и обещал, привожу окончательный (как оказалось позже, “почти” окончательный) вариант схемы усилителя Zen-V. Zen_V_Schem_10_12_001 От опубликованного ранее варианта эта схема отличается увеличенным до 24V напряжением источника питания и увеличенным до 550 mA  на канал током покоя, добавленным в схему фильтром питания и измененными номиналами нескольких резисторов и конденсаторов. Необходимость в фильтре питания выяснилась по мере накопления опыта эксплуатации усилителя с различными моделями наушников – на низкоомных высокочувствительных наушниках иногда в паузах был заметен фон (подробнее см. ниже). Простейшая схема фильтра на полевом транзисторе решила эту проблему, дополнительно обеспечивая плавное нарастание напряжения на выходе усилителя при его включении. Увеличение тока покоя одновременно улучшило стабильность работы усилителя на низкоомную нагрузку и расширило полосу в области ВЧ на “большом” сигнале до 25 кГц. На мой взгляд, этот вариант схемы оптимален и дальнейшее ее усложнение не имеет особого смысла.

Уровень Фона в усилителях Zen и Звуковоспроизведение.

Однотактные полупроводниковые усилители Zen, как и их ламповые «братья» в силу особенностей схемотехники обладают уровнем фона, нехарактерным для современных транзисторных конструкций. Если в ламповом усилителе небольшой фон воспринимается “естественно“, то в транзисторном усилителе это вызывает повышенный интерес и внимание. Причина в том, что для ощущения «абсолютной тишины» в высокочувствительных наушниках закрытого типа уровень фона усилителя должен быть ниже -70…76 dB, что достижимо только при применении специализированных стабилизаторов напряжения питания. С одной стороны, стабилизаторы уменьшают уровень фона и помех, а с другой – по моему мнению – существенно ухудшают звучание, делая его «стерильным» и лишенным живой естественности и динамики. Поэтому напряжение источника питания моих усилителей – не стабилизированное, а снижение уровня пульсаций выпрямленного напряжения осуществляется с помощью многозвенного CRC фильтра и дополнительного активного электронного фильтра на полевом транзисторе. Это решение позволяет получить уровень фона пульсаций примерно – 63…-70dB с сохранением естественного, живого и динамичного звучания усилителя. Такое значение уровня фона ниже, чем в аналогичных ламповых конструкциях, малозаметно на слух и, на мой взгляд, совершенно не мешает и не отвлекает от прослушивания музыки. Более того, уровень шума мастер-лент многих фонограмм выше этого значения.

Тем не менее, при ночном прослушивании музыки в высокочувствительных низкоомных наушниках закрытого типа фон может быть заметен. Если вы приверженец современной «цифровой тишины» в паузах между треками, то установка обычного линейного стабилизатора питания на интегральной микросхеме LT1084 позволяет получить желаемое. Но, на мой взгляд – за счет некоторого ухудшения звука.

Замечания по конструкции источника питания для усилителя Zen.

Для минимизации коммутационных помех, наводок и пульсаций в случае применения тороидальных трансформаторов в блоке питания усилителя Zen необходимо соблюдать следующее.

1. Более внимательно отнестись к расположению трансформатора в корпусе усилителя. Наводки на сигнальные цепи будут минимальны, если трансформатор расположен  перпендикулярно плоскости плат усилителя (например, закреплен на задней или боковой стенке корпуса) и (или) установлен в металлический экран. Желательно, чтобы трансформатор конструктивно был выполнен  с межобмоточным экраном.

2. Выпрямитель должен быть выполнен на диодах Шоттки (в случае применения обычных диодов желательно использовать “снабберы” (гасящие помехи RC цепи параллельно диодам). Снабберы действительно гасят помехи. Первый конденсатор фильтра блока питания должен быть небольшим. Его можно выбрать исходя из известного инженерного постулата – 1000 мкФ на 1A потребляемого тока. Далее следует установить RCRC фильтр, например такой -1.5 Ом 6800 мкФ 1 Ом 6800 мкФ  После RCRC фильтра – фильтр на полевом или биполярном транзисторе или стабилизатор напряжения. При соблюдении этих условий уровень пульсаций, наводок и помех на выходе усилителя составит ниже -65 dB.

3. Тороидальный или “обычный”, Ш-образный трансформатор питания. Тороидальные трансформаторы необходимой мощности в настоящее время более распространены. К сожалению, ввиду особенностей нашей питающей сети, без применения особых мер многие достоинства тороидальных трансформаторов оборачиваются их недостатками. В частности, более плотная, по сравнению с Ш-образным, “упаковка” материала сердечника приводит и к более “легкому” возникновению искажений формы тока при кратковременном насыщении материала сердечника. Это возможно при высоком уровне гармоник в питающей сети (“типовое” значение коэффициента гармоник “домашней” сети 220 Вольт – около 10%) или при неверно (точнее-  “оптимистично” :)) спроектированном выпрямителе и фильтре блока питания. Поэтому хорошее правило при выборе тороидального трансформатора для питания усилителя  – обеспечьте как минимум трехкратный запас по мощности. Применение для питания домашней музыкальной системы как минимум сетевых фильтров, а лучше сетевых “кондиционеров и стабилизаторов питания” – обязательно.

Традиционный трансформатор с “Ш” образным сердечником, если его обмотки выполнены верно, во многом свободен от недостатков тороидальных собратьев – из-за наличия технологического зазора такой трансформатор в насыщение входит “труднее”, гармоники сети переносит легче, уровень паразитных помех на выходе выпрямителя с таким трансформатором получается ниже. Недостатка два – габариты и узкий ассортимент.

Трансформаторы питания с ленточными сердечниками (“подковами”) на мой взгляд, удачно сочетают в себе все недостатки тороидальных и Ш-образных собратьев. 🙂

Light Voice – ЦАП и усилитель для наушников – Система выходного дня

Как-то так получилось, что от различных проектов у меня осталось пара немного побитых алюминиевых корпусов. Домашняя акустика с марта на очередной доработке, проверяется новый, улучшенный 🙂 вариант. Но музыку-то слушать надо. И вот, на майских праздниках сваял такой “прикроватно-тумбочный” комплект.
Два блока. Первый — усилитель для наушников, по схеме аналогичной “комбайну для HD-800”, лампы 6080 RCA и 6Н8С МЭЛЗ 1956 года. Второй — ЦАП (AK4393), выход – пассивный, на трансформаторах Western Electric + USB конвертор на чипе Tenor. Конвертор и ЦАП могут работать как вместе, так и раздельно. Максимальный поддерживаемый формат входных данных 24/96. Получилось весьма интересно, слушаю и радуюсь. Назвал систему — Victors Light Voice

Схема и описание усилителя.

Схема усилителя – Light_Voice_2012

Усилитель двухкаскадный, первый каскад – усилитель напряжения на половинке двойного триода 6SN7 (6Н8С). его коэффициент усиления  =14. Режим работы выбран на линейном участке ВАХ,  поэтому характеристики каскада устойчивы к колебаниям напряжения источника питания. Напряжение анод-катод выбрано = 100…102V, ток покоя = 5…5.2 mA. Режим устанавливается подбором номинала катодного резистора. В данном варианте схемы «голова управляет хвостом», то есть  режим работы выходного каскада определяется режимом работы входного.

Выходной каскад – катодный повторитель на половинке мощного двойного триода 6AS7 (6080), коэффициент передачи = 0.5, выходное сопротивление примерно 100 Ом, максимальное выходное напряжение на нагрузке 300 Ом составляет 3.5V RMS. Как и у первого каскада режим работы выбран на линейном участке  ВАХ, что обеспечивает устойчивость характеристик. Напряжение анод катод выбрано = 90V, ток покоя = 70 mA. Мощность, рассеиваемая на половинке 6AS7 в этом случае составляет 6.3Вт, что значительно меньше предельно допустимой (12 Вт)

Усилитель не критичен к напряжению источника питания и сохраняет работоспособность в диапазоне питающих напряжений 200…250V.

Несколько слов о выборе номинала резистора R8. В этой схеме он может быть в диапазоне 1.7…2.5 кОм, от его номинала зависит уровень искажений и максимальный размах выходного напряжения. Для сопротивления нагрузки 300 Ом оптимальное значение R8 = 2.2 кОм. В качестве R8 желательно применить резистор в металлическом корпусе (Vishay, Mills) с допустимой мощностью рассеяния не менее 25 Вт. В процессе работы усилителя на этом резисторе выделяется примерно 12 Вт тепла, поэтому следует позаботиться о свободном монтаже и о циркуляции воздуха в корпусе усилителя.

Выходные конденсаторы С5, С6 следует применить максимально возможного-доступного качества. Хороший выбор – Hovland + Panasonic. Изменяя номинал С5, в некоторой степени можно регулировать тональный баланс звучания усилителя. Резисторы R3, R5 обеспечивают устойчивую работу усилителя на ВЧ на пиках сигнала.

Наладка усилителя сводится к установке на аноде 6SN7 напряжения  100…105V. этого добиваются подбором резистора R7, обычно его номинал находится в пределах 410…500 Ом.   При установке заданного режима работы первого каскада режим работы выходного каскада устанавливается автоматически.

Блок питания усилителя  каких либо особенностей не имеет. Выпрямитель – двухполупериодный со средней точкой, пульсации выпрямленного напряжения фильтруется электронным фильтром на MOSFET транзисторе. Трансформатор TR1 должен обеспечить напряжение на вторичной обмотке 180+180V RMS при токе нагрузки не менее 200 mA, я применил Hammond 363CX. Накальный трансформатор должен быть рассчитан на ток нагрузки не менее 4A, я применил китайский накальный трансформатор, намотанный на сердечнике R-Core. Хороший вариант накального трансформатора для этой схемы-  Нammond 185C12  Диоды – обычные, серии FR, на обратное напряжение не менее 600V. Схема фильтра обеспечивает  плавное нарастание анодного напряжения при включении усилителя. Подбором резистора R12 в небольших пределах можно регулировать напряжение на выходе фильтра. Транзистор VT1   нужно установить на радиатор, как вариант – можно закрепить его через изолирующую прокладку на металлическое шасси усилителя. Конденсатор С9 должен быть очень качественным, с минимальным током утечки.

Накал ламп питается напряжением переменного тока, для снижения уровня проникновения помех по цепям накала потенциал накальных обмоток  с помощью делителя напряжения R16 R17 поднят относительно общего примерно на + 20 Вольт.

Усилитель очень благодарно «отзывается» на качество примененных компонентов и, на мой взгляд, является одним из лучших усилителей для таких наушников, как, например Sennheiser HD800

Май 2012 год                                                                                                 г.Владивосток

Усилитель оказался популярным и сравнительно легким для повторения 🙂   На фото ниже – вариант Сергея, известного как karnaser на форуме doctorhead. Это его первая конструкция на лампах. Трансформаторы и шасси – Hammond.

Июль 2013 год

И еще один вариант – от  Александра, это его вторая конструкция на лампах. По моему, получилось весьма неплохо.

Ноябрь 2013 год

Усилитель ZEN V для наушников класса HD800 и LCD3

Примерно с год тому назад на форумах сайтов audioportal.su и doctorhead.ru довольно интенсивно обсуждался вопрос качественного и сравнительно компактного универсального усилителя для наушников. Собственно, необходимость в таком усилителе возникала с выходом двух уникальных по своим техническим характеристикам моделей наушников – динамических Sennheiser HD-800 и изодинамических LCD-3

 

Основная проблема заключалась в том, что фактически ни один из широко распространенных серийно выпускаемых транзисторных усилителей не обеспечивал этим наушниками звучания, хотя бы сравнимого по качеству со звучанием специализированного лампового усилителя (см http://easytubeamp.com/?p=449).  Известный на doctorhead форумчанин SharapOFF, проводя различные коммутационные эксперименты 🙂 обнаружил, что один из предусилителей Aleph (от Pass Labs) удивительно ясно и музыкально играет с выхода на наушники, хотя и уровень выходного сигнала был недостаточен. Так и возникла идея о создании транзисторного усилителя по топологии Zen, специально ориентированного для работы со “сложными”  наушниками.  За основу была взята схема Zen V4 (Penultimate Zen), режимы пересчитаны исходя из требований к нагрузке. В ходе отладки было собрано три версии усилителя, схема и описание третьей версии представлены ниже.

1. Схема усилителя.

На рисунках представлены блок схема и схема блока коммутации усилителя, принципиальные схемы буферного усилителя мониторного выхода, блока питания и усилителя мощности.  Для наглядности на схемах показан только один канал.

Усилитель имеет три входа – один с разъемом RCA-типа (Вход 1) и два с разъемами XLR-типа (Вход 2 и Вход 3). Вход 2 преобразует входной балансный сигнал в SE при помощи трансформаторного преобразователя. Преобразователь выполнен на специализированном трансформаторе Jensen JT-11P. RC цепочка R3C3 необходима для шунтирования вторичной обмотки, что линеаризует АЧХ трансформатора в области ВЧ. Цепочка R1C1  и переключатель S1 служат для коммутации экрана входного кабеля на корпус усилителя по постоянному или по переменному току (это позволяет «разомкнуть» возможную земляную «петлю»), его положение выбирается по минимуму слышимого фона и наводок.

Вход 3  коммутирует входной балансный сигнал в SE стандартным образом – в качестве сигнального применяется пин «+», в качестве общего – пин «-». Этот вход так же снабжен переключателем-коммутатором экрана входного кабеля (S2).

Выбор входа осуществляется переключателем S3, в качестве которого применен прецизионный коммутатор DACT. Положения 1,2,3 соответствуют номеру выбранного входа, положение 4 размыкает цепь сигнала и замыкает вход усилителя на общий (режим “MUTE”). С выхода коммутатора входов сигнал поступает на буферный усилитель мониторного выхода и на регуляторы баланса и громкости.

Буферный усилитель выполнен на cдвоенном скоростном операционном усилителе AD827, включенным по схеме повторителя с однополярным питанием.  Буферный усилитель позволяет снизить взаимовлияние устройств, подключенных к мониторному выходу и входам и развязывает их по постоянному току.

Регуляторы баланса и громкости выполнены на прецизионных ступенчатых резистивных аттеньюаторах DACT. С регуляторов сигнал поступает на вход усилителя мощности.

Усилитель мощности выполнен по однотактной схеме, на полевом транзисторе Q2, включенным с общим истоком. В качестве нагрузки применен «следящий» источник тока на транзисторах Q1, Q3. Каcкад работает в классе A, резистором R13 задается начальный ток покоя каскада (350…400 mA). Элементы следящей связи R6,R8,C5 обеспечивают подстройку тока каскада в зависимости от амплитуды сигнала на выходе. Введение «следящей связи» позволило существенно снизить выходное сопротивление каскада и увеличить максимальный размах напряжения на нагрузке. Резистором R2 устанавливают рабочую точку каскада по напряжению таким образом, чтобы обеспечивалось симметричное ограничение выходного сигнала максимальной амплитуды.

Выбранные режимы обеспечивают размах выходного напряжения усилителя 5.5V RMS на нагрузке 30 Ом. При этом спектр искажений усилителя при изменении амплитуды сигнала спадает и нарастает равномерно и ограничивается 4-й гармоникой, аналогично спектру искажений высококачественных однотактных усилителей на лампах. В цепях питания и в качестве разделительного С2 применены конденсаторы Panasonic FC. Конденсатор С2 дополнительно зашунтирован высококачественным пленочным конденсатором С3 марки Jentzen.

Блок питания усилителя особенностей не имеет. Левый и правый каналы усилителя мощности питаются от отдельных выпрямителей. Буферный усилитель питается от выпрямителя правого канала. Светодиод индикации включения усилителя питается от выпрямителя левого канала. В качестве выпрямителей применены мощные быстрые диоды Шоттки 1N5819, в качестве фильтрующих конденсаторов – Panasonic FM.   Средний вывод сетевой розетки соединен с корпусом усилителя.

Из-за сравнительно высокого тока покоя усилитель выходит на рабочий температурный режим в примерно через 30-40 минут после включения, после чего звучание усилителя стабилизируется.

2. Управление и коммутация.

На передней панели усилителя слева направо размещены:

  • Два разъема для подключения телефонов, разъемы идентичны и могут быть использованы как для совместного, так и для раздельного подключения как высокоомных (>150 Ом), так и низкоомных (20…150 Ом) телефонов.
  • Переключатель-селектор входов на 4 положения. Положение «1» соответствует первому входу (RCA), положения «2» и «3» соответсвуют XLR входам, положение «4» отключет вход усилителя мощности от источника сигнала и замыкает его на общий (режим «MUTE»).
  • Регулятор баланса,
  • Регулятор громкости.

На задней панели усилителя расположены –

  • Вход № 1 (RCA) – правый канал (красный) – нижний, левый (белый) – верхний.
  • Bход № 2 (XLR) – правый канал нижний, левый – верхний. Вход №2 снабжен трансформаторным преобразователем балансного сигнала в небалансный. Переключатель, расположенный рядом с входом, коммутирует экран соединительного кабеля на корпус усилителя. Положение переключателя выбирается по минимуму слышимых наводок.
  • Вход № 3 (XLR) – правый канал нижний, левый – верхний. Вход № 3 предназначен для подключения современных балансных источников, которые допускают использования сигнала «-» в качестве общего. Этот вход так же снабжен переключателем-коммутатором экрана соединительного кабеля.
  • Выход (RCA) (расположен по центру задней панели) –  правый канал (красный) – нижний, левый (белый) – верхний. Буферизированный контрольный выход, уровень сигнала на нем равен входному. Регуляторы громкости и баланса на контрольный выход не действуют.
  • Разъем подключения сети (220 Вольт) и предохранитель. Центральный вывод сетевого разъема подключен к корпусу усилителя.

3. Основные технические характеристики 

  • Номинальный уровень входного сигнала = 1V Rms
  • Входное сопротивление, не менее = 50 кОм
  • Максимальный уровень выходного сигнала на нагрузке 300 Ом (@1000Hz) = 6.3V Rms
  • Максимальный уровень выходного сигнала на нагрузке 30 Ом (@1000Hz) = 5.5V Rms (Примечание 1 – под «максимальным» понимается уровень, при котором на экране осциллографа ограничение синусоидального сигнала становится едва заметным)
  • Выходное сопротивление (максимальное значение) @ 1000Hz = 0.5 Ом
  • Неравномерность АЧХ при уровне выходного сигнала -10dB от максимального в полосе частот 10Гц…20кГц = не более +- 1 dB.
  • Общий коэффициент гармоник при выходной мощности – 10dB от номинальной = менее 0.5%,  2-я и 4-я гармоники. (Примечание 2 – Усилитель имеет очень ограниченный спектр искажений, преимущественно четные гармоники. При изменении амплитуды выходного сигнала спектр гармоник остается плавноспадающим и плавнонарастающим, с мягким клиппингом, характерным для усилителей, работающих в классе А без ООС).

4. Благодарности

Выражаю огромную благодарность Маеву Сергею Владимировичу (г. Санкт-Петербург) за возможность разработать и изготовить для него эту конструкцию, а так же за продуктивное обсуждение технических деталей. Выражаю надежду, что этот усилитель будет радовать его своим звучанием на протяжении многих лет.

Так же выражаю благодарность талантливейшему инженеру и замечательному, открытому к общению и доброжелательному человеку Nelson Pass, который уже много лет вдохновляет и направляет тысячи аудиоэнтузиастов и разработчиков аппаратуры.

И еще один вариант, собранный недавно для Столярова Максима Анатольевича, г. Горловка, Украина. Большое спасибо за заказ.

Сентябрь 2011- Июнь 2012 года                                                г. Владивосток

PS По многочисленным просьбам 🙂 привожу самый последний вариант однокаскадного усилителя Zen -V  Zen_V_final_11_12.

Комментарии  — Ток покоя выбирается при сборке усилителя и не подстраивается, на практике в этом нет необходимости. Его настройку производят  выбором номинала R6, ток покоя считается как 0.7/R6, где 0.7V – это напряжение “открывания” VT4.  R6 можно выбрать в пределах 1.3…1.5 Ом, ток покоя при этом будет  460…540 mA. R6 удобно составить из двух параллельно соединенных резисторов номиналом 2.7…3Ом мощностью 2 Вт.  Резистором R2 подстраивают “симметрию” ограничения сигнала на выходе усилителя. В зависимости от напряжения источника питания возможно дополнительно потребуется подстройка резистора R3.

Для этого усилителя я рекомендую строить выпрямитель блока питания по схеме со средней точкой вторичной обмотки (на двух диодах), трансформатор должен иметь две идентичное обмотки (или одну обмотку с отводом от середины), например  20+20, 22+22, 24+24 Вольт при максимальном токе нагрузке не менее 3…5А.  В последней версии усилителя я применяю трансформаторы мощностью 220VA. Фильтр CRCRС, первая емкость = 2200 мкФ, резистор 0.5 Ом 5W, вторая емкость 10000 мкФ, резистор 0.5 Ом 5W, третья емкость 47000 мкФ. Минусовые обкладки конденсаторов объединены медной шиной круглого сечения диаметром 2мм. Шина соединена с металлическим корпусом усилителя через RС цепь R15C10.  Для высококачественных усилителей для наушников такая организация источника питания – необходимость.

Каналы усилителя собраны на отдельных платах. Питание и общий подводятся на каждый канал отдельными проводами. Общие с выходов каналов объединяются на разъеме для наушников.
Транзисторы VT1,VT2,VT3 каждого из каналов установлены на боковых стенках металлического корпуса усилителя, размер которых 80x330x5 мм. При работе стенки корпуса нагреваются примерно до +45 градусов, это нормальная  температура. Транзисторы следует устанавливать через слюдяные или керамические прокладки, обязательно с применением термопасты. Силиконовые прокладки использовать крайне нежелательно.

Ноябрь 2012                                                                                      г.Владивосток

Двухтактный ламповый усилитель для наушников STAX

Предварительно этот усилитель был “заявлен” на форуме doctorhead.ru (в теме “Схемотехника усилителей для электростатических наушников”). Здесь – полное описание конструкции.

1. Схема усилителя.

Принципиальная схема усилителя и его блока питания приведена в файлах. STAX_Amp_PP_June_2012_003  STAX_Amp_PP_June_2012_004

Каждый из двух каналов собран по двухтактной схеме, на триодах со средним коэффициентом усиления (драйверный и фазоинверторный каскады), и на пентодах средней мощности в триодном включении (выходной каскад), без общей ООС.

Для наглядности на схеме показан только один канал.

Первый (входной) каскад – усилитель с общим катодом с резистивной анодной нагрузкой. В качестве ламп первого и второго каскадов применен двойной триод 6BZ7 (6BQ7), особенностью которого является хорошая линейность при сравнительно небольшом напряжении на аноде. Режим работы первого каскада – ток покоя каждого плеча 3.7…4 mA, напряжение на аноде + 120…+125V.  Напряжение смещения = -2.0…-2.1V.  Второй (фазоинверторный) каскад собран по схеме с расщепленной нагрузкой. Ток покоя второго каскада  8…9 mA, напряжения на аноде и катоде лампы второго каскада равны +240…+245V и +124…+127V соответственно. Связь между первым и вторым каскадами – гальваническая, режим работы устанавливается резистором R7. Резистором R9 производится балансировка фазоинверторного каскада. Общий коэффициент усиления первого и второго каскадов = ~30. Для полной «раскачки» выходных ламп необходимо напряжение на их сетках примерно 10…12V rms, таким образом чувствительность усилителя составляет примерно 0.4V rms.

В первом и втором каскадах допустимо применение ламп 6BZ7, 6BQ7, 6DJ8, 6922, E88CC, ECC88, 6Н23П-ЕВ и даже 6Н1П-ЕВ (с некоторым снижением коэффициента усиления).

Третий (выходной) каскад усилителя собран по двухтактной схеме, с раздельным автоматическим смещением выходных ламп. Связь между фазоинверторным и выходным каскадами – емкостная. Смещение задается резисторами R18, R19 в катодах выходных ламп. По переменному току эти резисторы зашунтированы конденсаторами С9, С10, С11, С12. Конденсаторы С11 и С12 включены по технологии “Ultrapath”. Ток покоя составляет 29…32 mA для каждой лампы. Нагрузкой каскада служит выходной трансформатор, вторичная обмотка которого симметричная, со средней точкой. В качестве выходных трансформаторов применены изделия от компании Lundahl, модели LL1660S/PP, скоммутированные по схеме PP/PP c  коэффициентом передачи  (2.25+2.25):(2+2). Режим работы выходных ламп выбран таким образом, чтобы на нагрузке обеспечивался максимально возможный размах выходного напряжения при минимуме нечетных гармоник. Так как четные гармоники в двухтактном каскаде в значительной степени компенсируются, то при подборе выходных ламп в близкие по параметрам пары это позволяет получить очень низкий общий уровень гармонических искажений усилителя и обойтись без введения петли ООС.

В качестве ламп выходного каскада используются пентоды средней мощности 6GK6,  в триодном включении.  С некоторым ухудшением характеристик и с перепайкой цоколевки можно применить EL84, 6П14П-ЕВ.

Блок питания усилителя особенностей не имеет.

В качестве трансформатора питания и накала использован подходящий по парметрам весьма качественной трансформатор компании Hаmmond.

Накал питается напряжением переменного тока, для уменьшения уровня помех и наводок на накальные цепи, напряжение накала «поднято» над общим примерно на +80V при помощи делителя R27R28C17.

Анодное напряжение, необходимое для работы схемы, снимается со вторичной обмотки трансформатора питания и выпрямляется кенотроном. Выпрямленное напряжение (+415 V) фильтруется с помощью стабилизатора- электронного фильтра на транзисторе VT1, он же обеспечивает плавное нарастание анодного напряжения при включении усилителя. Напряжение на выходе фильтра = +385 V.  Напряжение BIAS (+580V), необходимое для работы телефонов STAX, формируется с помощью выпрямителя на полупроводниковых диодах VD3,VD4, простейшим стабилизатором на элементах R30ZD,  и фильтром на элементах С21R31C22.

С предварительно подобранными лампами 6GK6 в выходном каскаде усилитель обеспечивает следующие характеристики –

  • Входное сопротивление = 24 кОм;
  • Выходное сопротивление, не более 2.4 кОм;
  • Максимальное выходное напряжение (на каждом из балансных выходов) = 185V RMS (518V Peak-to-Peak);
  • Номинальное входное напряжение = 400mV RMS;
  • Полоса воспроизводимых частот, при неравномерности +-1 dB и уровне выходного напряжения 100V RMS, на эквиваленте нагрузки сопротивлением 100 кОм = 20Гц…22кГц;
  • Общий коэффициент искажений на выходе усилителя, при уровне выходного напряжения 100VRMS = < 0.5% (Определяется точностью подбора по характеристикам ламп выходного каскада, при установке неподобранной пары ламп одного изготовителя и одной даты выпуска = < 2%);
  • Уровень шумов и помех на выходе усилителя, при минимальном положении регулятора громкости, измеренный на эквиваленте нагрузки сопротивлением 100 кОм = < -65dB;
  • Время выхода на «рабочий» режим после включения, <= 30 мин.

2. Благодарности

Выражаю огромную благодарность Боброву Евгению Владимировичу  (г.Магнитогорск) за возможность разработать и изготовить для него эту конструкцию, а так же за продуктивное обсуждение технических деталей. Выражаю надежду, что этот усилитель будет радовать его своим звучанием на протяжении многих лет.

Так же хотел бы упомянуть о талантливейшем Британском инженере D.T.N. Williamson,  много лет назад вдохновившем и направившем схемой своего двухтактного усилителя десятки тысяч аудиоэнтузиастов и разработчиков аппаратуры во всем мире.

Май-Июнь 2012 года                                                                г. Владивосток

Усилитель Auridux-V для наушников STAX

STAX  Amplifier Auridux V rev 2.0  Jan-2012

Усилитель был собран по заказу известного на doctorhead.ru форумчанина Deeoneза что ему огромнейшее спасибо. Нужно отметить, что Deeone не только принимал активное участие в обсуждении концепции усилителя, а так же оказал ценную помощь при систематизации и осмыслении результатов сравнительного прослушивания.

Принципиальная схема усилителя и его блока питания – STAX_Auridax_V_001

Усилитель на триодах со средним коэффициентом усиления,  двухкаскадный, собран по балансной схеме, без общей ООС. Для наглядности на схеме показан только один канал. Первый (входной) каскад – балансный усилитель с общим катодом, с резистивными анодными нагрузками. В качестве лампы первого каскада применен двойной триод 6BZ7 (6BQ7), особенностью которого является хорошая линейность при сравнительно небольшом напряжении на аноде. Режим работы первого каскада – ток покоя каждого плеча 6…7 mA, напряжение на анодах +100…110V.  Напряжение смещения = -1.3…1.4V. Катоды триодов первого каскада объединены  что, при их близких параметрах, позволяет получить на выходах каскада прямой и инверсный  сигналы практически одинаковой амплитуды («несимметрия» составляет не более 0.5%)  Переключатель S1 служит для коммутации входных цепей усилителя для работы с балансным или небалансным источником сигнала. В случае балансного входного сигнала – он, через регулятор уровня на сдвоенном резисторе R1R1′ непосредственно подается на сетки ламп входного каскада. В случае небалансного источника сигнала его уровень регулируется только верхней половиной резистора R1, небалансный сигнал усиливается и инвертируется левым (по схеме) триодом лампы T1 и через регулируемый делитель напряжения С1R10R11 подается на сетку правого (по схеме) триода T1. Резистором R11 регулируется идентичность прямого и инверсного усиленных сигналов на выходах первого каскада. В случае работы с балансным входным сигналом регулируемый делитель C1R10R11 из цепи прохождения сигнала исключен и какой-либо подстройки режимов не требуется.

При работе с небалансным входным сигналом коэффициент усиления первого каскада = 27…33 – он зависит от типа и разброса характеристик примененых ламп.  Допустимо применение ламп 6BZ7, 6BQ7, 6DJ8, 6922, E88CC, ECC88, 6Н23П-ЕВ и даже 6Н1П-ЕВ (с некоторым снижением коэффициента усиления).

Второй (выходной) каскад усилителя так же собран по схеме с общим катодом. В качестве «левого» и «правого» «плеч» схемы применены так называемые SRPP каскады. Это позволило даже при некотором разбросе характеристик ламп получить очень близкие (как по постоянному, так и по переменному току) режимы работы плеч каскада, отличные динамические характеристики, низкое выходное сопротивление и низкий уровень искажений.   Как и в первом каскаде, катодная связь обеспечивает стабильную идентичность прямого и инверсного сигналов на выходе усилителя. Такое решение позволило, во первых, обойтись без петли общей ООС, и во-вторых, сделать связь между первым и вторым каскадами гальванической, то есть без разделительных конденсаторов.  В этом случае, режим работы по постоянному току второго каскада задается режимом работы первого. Для лучшей симметрии и стабильности режимов как по постоянному, так и по переменному току второго каскада в качестве элемента катодной связи применен интегральный регулируемый источник тока IXYS IXCP10M45S. Лампы выходного каскада распределены особым образом – нижние по схеме триоды – это первая лампа, верхние – вторая. Накалы всех ламп «приподняты» относительно «земли» – у ламп первого каскада и нижних ламп второго примерно на +80V, у верхних ламп второго каскада примерно на + 420V. Это сделано для избежания пробоя между электродами накала и катода у верхних по схеме триодов, а так же для уменьшения уровня помех и наводок между накалом и катодами ламп. Уточнение по схеме блока питания – номиналы R20 и R21 нужно поменять местами.

Балансный сигнал снимается с катодов верхних триодов и через разделительные кондесаторы С3, С4 подается на разъем для подключения телефонов. В качестве разделительных  применены маслонаполенные конденсаторы  Jensen 0.47 uF 630V (лучше – 1000V), с обкладками из медной фольги и бумажными изолирующими прокладками. Резисторы R15, R16 служат для уменьшения уровня переходных процессов при включении усилителя.

Режим работы выходного каскада – ток покоя  каждого плеча = 13…15mA,  напряжение анод-катод каждого триода = 240…255V, напряжение смещения – 18…-20V.  Коэффициент усиления второго каскада = 12…15, максимальное выходное напряжение на каждом из выходов составляет ~160…175V RMS при этом общий коэффициент гармоник составляет не более 1% (зависит от типа и разброса характеристик примененных ламп).

В качестве ламп выходного каскада используется двойной триод 5687, с некоторым уменьшением усиления можно применить 12BH7, с перепайкой цоколевки – ECC99, 6Н6П-ЕВ.

Блок питания усилителя особенностей не имеет. В качестве трансформаторов питания и накала использованы отлично себя зарекомендовавшие изделия компании Hаmmond. Накал питается напряжением переменного тока.

Два анодных напряжения Ua1 и Ua2, необходимых для работы схемы, снимаются со вторичной обмотки силового трансформатора, выпрямляются диодным мостом. С среднего отвода вторичной обмотки снимается напряжение Ua1 (+335V), c верхнего вывода вторичной обмотки через выпрямитель снимается напряжение Ua2 (+675V). Анодные напряжения фильтруются с помощью обычных CLC фильтров (С6С7L1C11C12C13C14 и С7L2C8), напряжение BIAS (+580V) необходимое для работы телефонов STAX получается из Ua2 простейшим стабилизатором на элементах R18ZD.

Поскольку баласная схема усиления обеспечивает хорошее подавление синфазной помехи в плечах усилительных каскадов, то дополнительной фильтрации или стабилизации напряжения анодного питания не требуется.

Для обеспечения минимального уровня искажений и максимальной амплитуды выходного напряжения в усилителе необходимо применять лампы– двойные триоды- не только с максимально близкими общими характеристиками, но  с максимально близкими характеристиками половинок двойных триодов.

С предварительно подобранными лампами 6BZ7 во входном каскаде и с 5687 в выходном усилитель обеспечивает следующие характеристики –

  • Входное сопротивление = 49 кОм
  • Выходное сопротивление = 3.5 кОм
  • Максимальное выходное напряжение (на каждом из балансных выходов) = 165V RMS
  • Номинальное входное напряжение = 500 mV RMS
  • Полоса воспроизводимых частот, при неравномерности +-1 dB и уровне выходного напряжения 150V RMS, на эквиваленте нагрузки сопротивлением 100 кОм = 20Гц…60кГц
  • Общий коэффициент искажений на выходе усилителя, при уровне выходного напряжения 150VRMS = < 1%
  • Уровень шумов и помех на выходе усилителя, при балансном усилении, минимальном положении регулятора громкости, измеренный на эквиваленте нагрузки сопротивлением 100 кОм = < -65dB.

Январь 2012 год                                                                                             г.Владивосток

*** Схема и описание конструкции этого усилителя так же были размещены на сайте ostereo.ru. Там же есть и некоторые комментарии 🙂

*** Я крайне НЕ рекомендую повторять эту схему неподготовленным, неопытным самодельщикам, без навыков работы с высоковольтными ламповыми конструкциями. И, конечно – любую схему перед сборкой нужно “проходить с карандашом и калькулятором” – банальные опечатки не исключены.

*** Схемотехника усилителя во многом определялась предпочтениями заказчика. С моей точки зрения вариант выходного каскада с полупроводниковыми интегральными источниками тока в качестве анодной нагрузки мне кажется более предпочтительным.

“Комбайн” для электростатических наушников STAX SR-303

В начале 2011 года попал ко мне на профилактику комплект от STAX – усилитель SRM-323 и электростатические наушники SR-303.

Общие мысли и впечатления

Впечатление от прослушивания STAX-303 c “родным” усилителем были противоречивые. С одной стороны, хорошие детальность и музыкальное разрешение. С другой – весьма странная подача НЧ, явно “кричащие” отдельные частотные области на СЧ. Мне показалось, что этот экземпляр 323-го усилителя на пиках сигнала иногда непредсказуемо резко срывался в клиппинг. Исследование выходного сигнала с помощью осциллографа выявило некоторые особенности его реакции 🙂 . Во первых, перегрузка приводила к резкому подрезанию сигнала, которое было несимметричным и, помимо этого, ограничение по отрицательной части синусоиды сопровождалось кратковременным возбуждением усилителя на ВЧ. Подстройкой схемы далось добиться симметричного ограничения и ликвидации “подвозбуждения”. После этого звучание 323-го усилителя заметно улучшилось, но все таки, на мой “ух” оставалось излишне холодным,  резковатым – хотя и весьма детальным.

Было принято решение изготовить более интересный усилитель, совместив его с USB ЦАП.

Изучение имеющихся в интернете схем усилителей для электростатических наушников приводило к вполне однозначному выбору в пользу конструкций на лампах. Во первых, для работы наушников необходим источник высокого (около 600 Вольт) напряжения смещения. во вторых, уровень сигнала для их раскачки должен быть примерно 200…250В rms – при этом ток, потребляемый наушниками – весьма мал, максимум несколько миллиампер. (*** в последствии выяснилось, что это не совсем верно). Ламповая схемотехника как раз “оперирует” высокими напряжениями и небольшими токами. Поскольку в головных телефонах при их работе постоянно присутствует высокое, опасное для жизни напряжение- то, как мне кажется, важным моментом является и защита слушателя – то есть сигнальные цепи усилителя и наушники должны быть надежно  гальванически разделены- таким образом, например, чтобы неисправность источника питания или выходного каскада усилителя не приводила к возможному поражению слушателя электрическим током. Поэтому я считаю очевидным, что выходной каскад усилителя для электростатических наушников должен быть выполнен по схеме или с выходным трансформатором или иметь разделительные конденсаторы на выходе. (*** для усилителя, не охваченного петлей общей ОС) Предпочтение было отдано варианту с выходным трансформатором, за основу была взята известная схема Andrea Ciufolli.

Схема и Описание

  • Блок схема, выходной каскад ЦАП и первый каскад усилителя – STAX_Schem_001
  • Выходной каскад усилителя – STAX_Schem_002
  • Блок питания – STAX_Schem_003

Исходя из поставленной задачи, было необходимо  в одном корпусе с усилителем для наушников разместить  ЦАП с USB входом, а так же предусмотреть линейный выход сигнала, чтобы была возможность, подключить к этой конструкции, например усилитель мощности.

ЦАП 

В качестве ЦАП применена серьезно модифицированный DIY – kit  на наборе микросхем 1798 (ЦАП с токовым выходом) и 8416 (цифровой приемник-коммутатор), в качестве USB-SPDIF преобразователя применен так же серьезно модифицированный DIY- kit  на чипе Tenor TE7022L. ЦАП может работать с входными сигналами разрядности до 24/192 (COAX вход) и 24/96 (USB). Выбор входа COAX или USB производится переключателем S1. Микросхема ЦАП 1798 имеет “токовый” выход аналогового сигнала, то есть для получения на выходе устройства напряжения сигнала необходимо применить преобразователь ток- напряжение. Обычно эту функцию выполняют (и иногда весьма неплохо) специальные схемы на операционных усилителях. В данном случае, после отслушивания нескольких вариантов выходного каскада ЦАП – на  быстродействующих прецизионных операционных усилителях, на пассивных элементах с трансформаторной связью, на операционных усилителях с выходными трансформаторами в качестве нагрузки,  был сделан однозначный выбор в пользу простого пассивного преобразования ток в напряжение на резисторе. При этом используется только один токовый выход ЦАП (I+). Второй токовый выход (I-) остается без нагрузки, как выяснилось, это позволяет существенно снизить уровень помех на выходе ЦАП, На известные недостатки, якобы присущие такому методу преобразования, такие как  меньший, чем в случае  двух выходных сигналов (I+ и I-) динамический диапазон и на “недостаточную линейность” преобразования было принято решение внимания не обращать. 🙂   Сигнал с выхода ЦАП, выделяемый на резисторе нагрузки, затем усиливается каскадом на лампе T1 – 6СМ4 (Hitachi). Это одиночный триод, разработанный для усиления сигналов с системах телефонной связи. Имеет довольно высокий коэффициент усиления (~ 68), отличную линейность характеристики и крайне низкий уровень шумов. Лампа в общем-то, не редкая и сравнительно недорогая. Усилительных каскад каких-либо особенностей не имеет. В итоге на выходе модуля ЦАП получается сигнал амплитудой ~ 2.3V RMS при входном тестовом сигнале 0 dB @ 1kHz.

Усилитель

Схема усилителя – двухкаскадная, с непосредственной связью каскадов. Источник сигнала на входе усилителя выбирается переключателем S2 (“Линейный” вход или выход с ЦАП). Оба каскада являются усилителями напряжения. Первый каскад – усилитель с резистивной нагрузкой выполнен на половинке лампs 12AU7 и имеет коэффициент усиления 20..22 (зависит от экземпляра лампы), второй – (выходной) каскад на лампе 6BX7, c трансформаторной нагрузкой и имеет коэффициент усиления 10..12. Выходной трансформатор – Lundahl LL1660, скоммутирован по схеме Alt V,  (одна первичная обмотка на две вторичные “полуобмотки”, на выводах вторичной обмотки – балансный сигнал). Общий коэффициент усиления составляет минимум 200, что, при входном сигнале 1V RMS, позволяет получить на аноде 6BX7 200V  RMS . Выбор, в общем-то не самого линейного триода 6BX7 в качестве выходной лампы обусловлен следующими ее особенностями: Во первых, эта лампа имеет, хороший “раскрыв” сеточных характеристик,  низкое внутреннее сопротивление и одновременно может работать при высоком напряжении на аноде – следовательно, может обеспечить большую амплитуду напряжения на выходе каскада. Во вторых, в случае трансформаторной нагрузки с большим сопротивлением во вторичной цепи (а именно такой нагрузкой для трансформатора являются электростатические телефоны), даже в случае небольшого тока покоя каскада уровень гармоник на выходе получается весьма небольшим, и это преимущественно будет только вторая гармоника. В итоге, общий коэффициент гармоник на выходе усилителя получается равным примерно 1% при уровне выходного сигнала 175V RMS, спектр “плавноспадающий” и состоит из 2-й и 4-й гармоники. Поскольку телефоны имеют балансную схему подключения, а вторичные полуобмотки выходного трансформатора практически идентичны, на нагрузке возможна дополнительная компенсация искажений, снижение уровня четных гармоник. Небольшая модификация схемы позволяет достичь более низкого уровня гармоник –  примерно 0.5% при уровне выходного сигнала 175V RMS, но в ходе прослушивания это оказалось излишним. На  второй половинке лампы 12AU7 собран буферный каскад, с которого снимается сигнал на линейный выход усилителя. Ограничение сигнала на выходе усилителя – “мягкое”, без “лавинного” роста искажений. Усилитель не охвачен общей петлей ООС.

Блок Питания

Выпрямитель собран по стандартной мостовой схеме, выходное напряжение (+380V) фильтруется электронным фильтром, в качестве регулирующего элемента которого применен высоковольтный iGBT транзистор. Электронный фильтр обеспечивает крайне низкий (по сравнению с традиционными LC фильтрами) уровень пульсаций выходного напряжения и плавное его нарастание при включении питания. Необходимое для работы электростатических наушников напряжение смещения (+580V)  формируется отдельным выпрямителем  на элементах VD6,VD7, C16, C17. и цепью “Вольтдобавки” R27 R28 C15. Цепь смещения практически не потребляет ток, поэтому фильтр на выходе применен самый простой, на элементах С17 R29 C18. Резистор сопротивлением 5MΩ обеспечивает защиту слушателя в случае замыкания или пробоя в телефонах. Схемы ЦАП и USB-SPDIF питаются от двух дополнительных обмоток (~ 6.3v) на силовом  трансформаторе. Питание накалов всех ламп осуществляется отдельным накальным трансформатором.

Наводки и Помехи

Электростатические наушники имеют высокое сопротивление, а сеть и окружающий нас “эфир” полны наводок от сотовых телефонов, сварки, импульсных блоков питания и т.п. Удивительно, но даже при выключенном питании, пока сохраняется напряжение смещения, иногда наушники самостоятельно могут ловить  различные помехи. Поэтому для снижения уровня возможных наводок и помех  корпус конструкции выполнен металлическим и предусмотрена клемма заземления. Хорошее заземление никогда не помешает :).

Июнь 2011 год                                                                                             г.Владивосток

Upgrade портативного плеера Colorfly C4 Pro

В одно обычное летнее утро позвонил мне известный на doctorhead.ru форумчанин SharapOFF и попросил посмотреть, что случилось с его портативным плеером Colorflу C4 Pro после того, как его случайно уронили  (на бетонный пол ?) 🙂

Вскрытие показало, что ничего особенно страшного не произошло. Питание в плеере организовано от аккумулятора, через несколько импульсных преобразователей напряжения. В результате удара в одном из преобразователей сломался дроссель, и, естественно, нужное напряжение на выходе пропало. Дроссель был заменен, после чего плеер заработал как новый. По ходу рассмотрения внутренностей конструкции возникло несколько идей. Во-первых, поскольку Colorfly С4 Pro может работать как портативный ЦАП, да еще и с различными частотами дискретизации, было высказано предложение об организации линейного выхода, чтобы, как минимум на “независимом” внешнем усилителе оценить все особенности звучания Colorfly как ЦАП и, может быть, сравнить звучание внешних источников и внутреннего проигрывателя цифровых файлов.  Во-вторых, не совсем понятно, почему в конструкции применен аккумулятор сравнительно небольшой емкости, хотя  вроде как ничего не мешает установить более емкий.  Было решено попробовать это сделать. В третьих, выявились некоторые претензии к звучанию устройства, в частности к уровню и качеству НЧ, причину этого нужно было выяснить подробнее.  Рассмотрение схемы показало, что сигнал с выходов микросхемы ЦАП поступает на схему фильтра- усилителя, выполненную на операционном усилителе, затем на движковый регулятор громкости, и с него на усилителя мощности, с выходов которых, через разделительные конденсаторы, на два выхода (один выход (6.3мм – “толстый”) предназначен для высокоомных, а другой (“тонкий”) – для низкоомных телефонов). Я обратил внимание на то, что разделительные (выходные) конденсаторы применены сравнительно небольшой емкости = 470 мкФ. Для низкоомных наушников (~ 30 Ом)  такая емкость в общем-то минимально-достаточна, но в данном случае больше – лучше. По ходу было принято решение использовать “тонкий” выход как линейный. Я убрал с платы конденсаторы 470 мкФ (4шт) и балластные резисторы для “тонкого” выхода (110 Ом, 2 шт). Соединил выходы операционного усилителя на “тонкий” разъем, и на “толстый” выход установил выходные конденсаторы емкостью 2200 мкФ марки Pаnasonic FC. Помимо этого я выпилил нижнюю часть деревянного корпуса, что позволило установить более емкий аккумулятор. Отверстие было затем закрыто декоративной металлической накладкой в “тон” цвету панели устройства. Дальнейшее прослушивание полностью оправдало проведенную модификацию – уровень НЧ “подравнялся”, звучание было оценено как отличное.

2010 год                                                                                             г.Владивосток

Переделка усилителя STAX SRM на 220 Вольт

После публикации на форуме doctrohead.ru в личных сообщениях меня часто спрашивают подробности переделки. Решил выложить их здесь и отсылать интересующихся на свой сайт. 🙂  Вот так выглядит  распайка входных клемм силового трансформатора модели на 100V:

Обратите внимание на два момента – во первых, на плате предусмотрены перемычки, как это обычно бывает в устройствах с универсальным питанием, во-вторых, из трансформатора торчат небольшие кусочки зачем-то обрезанных проводов. «Ларчик», хоть и залит лаком, открывается сравнительно просто. Взглянем более пристально –

Имеем – первичная обмотка, 7 выводов, два провода обрезаны. На 100 (115 ?)V первичка скоммутирована перемычками на плате следующим образом: Коричневый соединен с зеленым и на ноль, серый соединен с белым. Фаза через выключатель и предохранитель подается на желтый. На плате предусмотрено присоединение еще двух проводов – синего (BLU) и пурпурного (PUR). Забавно, что обрезки проводов именно такого цвета торчат из–под клеммной крышки. Овлекаемся, пъем чай, думаем. Замеряем напряжения питания в контрольных точках схемы усилителя. Записываем значения. Ищем в закромах провода  отрезанных цветов, паяем. В результате получается –

Отпаиваем коммутационные перемычки с платы, берем в руки тестер. Итак, трансформатор имеет две первичные обмотки: Синий-Коричневый-Серый и Пурпурный-Зеленый-Белый-Желтый. Очевидно, что Синий-Серый и Зеленый-Белый это крайние выводы идентичных симметричных обмоток, c высокой степенью вероятности это  0-110-115 V . Желтый – вывод дополнительной(?) (10V) обмотки (*** подробности по желтому выводу см ниже), начало которой соединено с Белым. Для работы в сети  230V обмотки следует соединить последовательно, то есть «Ноль» подать на синий, серый соединить с пурпурным, «фазу» подать на белый. Но, на плате не предусмотрена отдельная коммутация «белого» на фазу. Плата разведена так, что «Фаза» всегда подается на желтый, иная коммутация не возможна. По всей видимости, производитель предусмотрел некоторый запас (230…240V) по входному напряжению. Перемычки на плате однозначно коммутируют Ноль на синий и серый на пурпурный, устанавливаем эти перемычки.

Еще раз контролируем соединения, проверяем тестером на отсутствие замыканий. Осторожно включаем… Работает. Проверяем напряжения на выходах блока питания (на плате предусмотрены контрольные точки), особое внимание уделяем высокому напряжению BIAS. Сравниваем с записанными ранее. Значения должны быть такими же, как и до переделки.

Примечания. Иногда встречаются очень тяжелые случаи с выводами обмоток трансформатора, обрезанными “под корешок” и залитыми термоклеем –

Более подробно –

В этом случае нужно аккуратно острым скальпелем зачистить торчащий “пенек” и тонким паяльником очень аккуратно удлинить вывод –

Далее – все как  обычно –

И еще один “тяжелый случай” (SRM-007TA)

Stax_007ta_01 Stax_007ta_01-1 Stax_007ta_02 Stax_007ta_03 Stax_007ta_04 Stax_007ta_05 Stax_007ta_06

Небольшая “засада” – “искрогасящий” конденсатор параллельно контактам выключателя питания – нужно заменить на аналогичный, но с номинальным рабочим напряжением не менее 400V —

Stax_007ta_07

 Насчет стабильности напряжения BIAS.  В транзисторных усилителях STAX SRM напряжение BIAS (580V) формируется из сетевого переменного  напряжения  частотой 50/60Hz, которое снимается с отвода первичной обмотки трансформатора блока питания. В самом общем случае схема формирователя- умножителя выглядит так –

Особое внимание следует обратить на элементы R101 Z101 на которых фактически собран ограничитель входного (а, следовательно и выходного) напряжения схемы. Резисторы R103, R104, R105 помимо прочего, серьезно ограничивают ток, который схема может отдать в нагрузку, например, при случайном замыкании 🙂

Схема коммутации первичной обмотки сетевого трансформатора усилителя STAX SRM, взято из сервис-мануала:

SRM_Trans

Оказывается, между желтым и белым выводами установлен термопредохранитель -обмотка из нескольких витков, выполненная высокоомным проводом. Познавательно.

Ноябрь 2010 года                                                                         г, Владивосток