Woo Audio WA-22. Однозначно – только Upgrade.

В январе прошлого года ко мне обратился один известный форумчанин с просьбой посмотреть и, может быть что-нибудь сделать с усилителем Woo Audio WA-22. Удивительно, но точно так же, как это уже было с усилителем WA-5 – звук этого “изделия” меня очень неприятно поразил – плоский, невыразительный, вялый и вообще – какой то серый…  Kак же это, что же нужно было сделать, что бы усилитель на лампах звучал ТАК ? Открываю корпус, внимательно смотрю —

На первый взгляд – выглядит все вполне прилично, конденсаторы конечно – самые простые но вполне в пределах допустимого. Некоторую озабоченность вызвали выходные трансформаторы – на мой взгляд, в наборе применено слишком уж толстое железо. В общем, нужно разбираться в схемотехнике. Срисовываю приблизительную схему —WA_22_Schematics

И вот тут-то у меня и возникли вопросы. Во-первых, получается, что при подключении небалансного источника сигнала половина выходного каскада “отдыхает”, то есть фактически каскад работает в однотактном режиме, “нижняя” по схеме лампа выходного каскада выполняет роль управляемого источника тока, компенсирующего намагничивание выходного трансформатора. Во- вторых, нагрузка усилителя подключена по небалансной схеме.

Итак, WA-22 – помимо того, что не является балансным усилителем, в случае подключения небалансного источника сигнала – строго говоря, не является и двухтактным усилителем. При этом  известная дилемма между выбором оптимального режима лампы выходного каскада для однотактного и (или) двухтактного включения никак не решена, то есть просто проигнорирована.

Таким образом, в случае работы усилителя от небалансого источника выходной каскад работает в совершенно не оптимальном режиме, примерно с 6% гармоник на выходе при максимальном сигнале. Более того, режим работы входного каскада – так же как и в усилителе WA-05 – выбран не оптимально -анодная нагрузка слишком велика, а ток покоя слишком мал. Помимо этого, усиления первого каскада совершенно недостаточно для полной раскачки выходного каскада. Измерение характеристик выходных трансформаторов показало, что при более-менее приличной индуктивности первичной обмотки (~ 20H @ 50Hz) КПД ( по всей видимости, из-за черезмерно толстых пластин набора сердечника) на частоте 500 Гц не превышает 80%.

Вывод – даже при самых прекрасных комплектующих и лампах звучать “так, как можно было бы от него ожидать”  этот усилитель не будет никогда. В общем –  очередной красивый корпус и набор комплектующих от Woo.

Было принято кардинальное решение – полная переделка, с оптимизацией конструкции под высокоомные наушники. Конфигурация схемы такая – двухкаскадный усилитель с входным каскадом на высоколинейном триоде 6J5 и с выходным каскадом на высоколинейном прямонакальном триоде #45, в качестве выходных трансформаторов применить Hashimoto HL-10K-6, вторичные обмотки которых позволяют подключить нагрузку по балансной схеме.

Разбираю, рассверливаю, собираю, прослушиваю –

Схема нового варианта усилителя –WA_22_45_Schematics

Первый каскад – традиционный каскад с резистивной нагрузкой, рабочая точка выбрана в линейной области – напряжение на аноде = 100…110V, ток покоя 4.5…5mA. Поскольку запаса усиления для “раскачки” выходной лампы – более, чем достаточно, то я принял решение не шунтировать резистор смещения в катоде лампы первого каскада.Второй каскад каких либо особенностей не имеет, режим так же выбран в линейной области – напряжение анод-катод = 200V, ток покоя = 30mA.  Накал ламп выходного каскада питается выпрямленным  и стабилизированным напряжением постоянного тока. Стабилизатор собран на интегральной микросхеме LT(LM) 1084. Нити накалов ламп первого каскада включены последовательно и питаются от обмотки силового трансформатора напряжением переменного тока 12.6V.

Схема блока питания –WA_22_45_PS

Блок питания  собран по типовой для моих конструкций схеме и особенностей не имеет. Напряжение источника питания, номиналы некоторых резисторов, марки некоторых элементов, особенности коммутации входных и выходных трансформаторов на схеме не показаны или указаны не точно – во многом  специально. Маленький прямонакальный триод # 45 – лампа, имеющая множество неожиданных тонкостей в “аудиофильски – правильной” реализации и поэтому адекватное повторение этой схемы возможно только серьезно подготовленными DIYer’ами.

г. Владивосток                                                               январь – сентябрь 2015г.

P.S. К сожалению, судьба этого усилителя сложилась не очень удачно. Он радовал счастиливого владельца своим замечательным звуком несколько месяцев, пока не проявился последний “сюрприз производителя” – в первичной обмотке силового трансформатора произошло межвитковое замыкание. Еще один повод задуматься о качестве изделий Woo Audio.

P.S.S.В ходе реализации этой конструкции по ходу дела я отмакетировал – на мой взгляд – ультимативный усилитель “предельного уровня качества” для высокоомных (от 150 Ом) наушников. Это однокаскадный трансформаторный усилитель, балансный вход, балансный выход. Назвал его – Zen Guru.  Схему опубликую чуть позже.

Простой корректор на Советских Лампах

Начинающие “виниловоды” часто спрашивают меня о простой в сборке и не требующей особой наладки схеме корректора, на недорогих и доступных лампах советского производства. Что же – такая схема у меня есть 🙂

6Н2П_EB_RIAA_001

Комментарии к схеме корректора.

На мой взгляд – это наиболее оптимальная и качественная схема на лампах 6Н2П-ЕВ, 12AХ7.  Первый каскад – лампы одного баллона соединены параллельно, это снижает внутреннее сопротивление, что, в свою очередь – понижает шумы и уменьшает выходное сопротивление каскада. Таким образом, цепи коррекции меньше нагружают первый каскад и потери сигнала на них получаются меньше. Второй каскад – с катодным повторителем на выходе, что обеспечивает низкое выходное сопротивление и дает возможность работать на длинный кабель и  сопротивление нагрузки от 10 кОм.
По конденсаторам в корректирующей цепи – высокого напряжения на них нет, поэтому можно применить качественные фольговые низковольтные полистирольные конденсаторы. Межкаскадный и выходной конденсаторы должны быть на рабочее напряжение не менее Ua. Катодные
конденсаторы – Panasonic серии FK, FC.  Панельки ламп лучше применить
со “стаканами”. Напряжение источника питания может быть в пределах +220…+300V (может быть и выше, но потребуется коррекция номиналов резисторов R9, R10).  Наладка схемы сводится к контролю режимов работы ламп и подбору ламп по  одинаковому итоговому усилению левого и правого каналов. Напряжение на анодах ламп первого и второго каскадов – в зависимости от напряжения источника питания должно быть в пределах  100…150 Вольт. Рекомендую запастись достаточным количеством ламп, 10 шт 6Н2П-ЕВ – это минимум для подбора идентичного комплекта. И еще –  лампы 6Н2П обязательно должны быть с индексом ЕВ.  Обычные “простые” 6Н2П – не подойдут, не тратьте на них свое время.

Блок Питания.

Схема – 6Н2П_EB_RIAA_002

Поскольку начинающие виниловоды применяют трансформаторы не “такие как надо”, а “такие, какие есть в наличии” 🙂 – то для исключения различных трудноустранимых “неожиданностей” я рекомендую выполнить блок питания в отдельном корпусе. Схема вполне стандартная – выпрямитель, фильтр на полевом транзисторе.  Если вторичная обмотка имеющегося в наличии трансформатора  – одна без отвода от середины и на напряжение 200…250V, то можно применить мостовой выпрямитель.
Транзистор фильтра и стабилизатор – на радиаторах, можно закрепить на
металлический корпус через изолирующие прокладки. Транзистор фильтра практически не нагревается, а стабилизатор напряжения накала будет
довольно горячим.

Хорошего Звука!

Январь 2015г.                                                                                     г.Владивосток

Иногда они возвращаются. Часть1. Еще раз про однотактный усилитель на KT88.

Схема этого усилителя была составлена по настойчивым просьбам начинающих любителей ламповой техники, которые хотели бы собрать очень качественный, но простой в сборке и наладке, универсальный, надежный и недорогой в эксплуатации однотактный усилитель, желательно на серийно выпускаемых и реально доступных к покупке качественных компонентах.

За основу я взял опубликованный ранее усилитель на 6922 и КТ88. Схема была модифицирована, применен драйвер с большим коэффициентом усиления, а выходной каскад выполнен по схеме с автоматическим смещением.

KT88_Amp_001

Входной каскад – SRPP на лампе 6SL7, выбран режим с довольно большим (для этой лампы) рабочим током = 2 mA. Максимальный размах выходного напряжения каскада на нагрузке 220К (R6) составляет ~ 150V Peak-to-Peak, коэффициент усиления ~ 45, выходное сопротивление 12К, что позволяет вполне уверенно “раскачать” динамическую входную емкость лампы KT88 в триодном включении. Расчетная полоса пропускания усилителя на “большом” сигнале  (без учета параметров выходного трансформатора) составляет не менее 60 кГц.

Выходной каскад – с автосмещением, режим работы лампы KT88 выбран близким к максимальному – ток покоя около 100 mA, рассеиваемая на аноде мощность примерно 38W. Ток покоя задается номиналом R9, на схеме указано минимальное значение = 330 Ом. Некоторые экземпляры “новодельных” KT88 плохо переносят режимы работы, близкие к максимальным – в этом случае номинал R9 следует увеличить до 400…430 Ом. R9 должен быть мощностью не менее 12W, можно применить несколько параллельно соединенных резисторов меньшей мощности.  Расчетное выходное сопротивление усилителя для нагрузки 8 Ом при выбранном режиме работы составляет ~ 1.6 Ом.

KT88_PS_001

Блок питания собран по традиционной для моих конструкций схеме. Выпрямитель – двухполупериодный, со средней точкой. В качестве выпрямительных применены высоковольтные полупроводниковые диоды серии FR107. плавное нарастание анодного напряжения и его фильтрация осуществляется фильтром на полевом транзисторе T1. Конструктивно он закреплен на шасси через изолирующую прокладку, это обеспечивает  необходимый теплоотвод. Делитель R4R5C5 поднимает” потенциал накальной обмотки над “общим” примерно на 60…70V. Для SRPP каскада подъем потенциала накала необходим, так как напряжение между катодом и накалом для верхнего триода превышает допустимое справочное значение (100V).  Емкость конденсатора С3 блока питания может быть безопасно увеличена до 1000…1500uF, это улучшит энерговооруженность блока питания и обеспечит более “основательную” проработку НЧ диапазона. Черезмерно увеличивать емкость С3  (>1500uF) не следует.

О компонентах – Трансформаторы Hammond 372JX (силовой) и 1628SEA (выходной). Усилитель стоит того, чтобы оформить его в виде моноблоков, силовых трансформаторов в этом случае понадобится два. 🙂  Резисторы – R9 – Mills, Vishay-Dale  мощностью не менее 12W, остальные резисторы Vishay-Dale, Kiwame, Panasonic- мощностью 1…2W. Регулятор R10 – TKD или, в крайнем случае – ALPS. Можно (и желательно) применить ступенчатый регулятор  на дискретных резисторах – DACT, GoldPoint и т.п. В случае оформления усилителя в виде моноблоков регуляторов понадобится два. Конденсаторы – электролитические – Panasonic, CDE, Nippon Chemicon. Конденсаторы С1 и С3 – Panasonic серии  FC, FM. Межкаскадный конденсатор С2 – Jensen Copper Foil Paper in Oil или, в крайнем случае K40-У9, его емкость может быть от 0.33 до 1 мкФ, рабочее напряжение – 630V. Применение межкаскадных конденсаторов с тефлоновым диэлектриком в этой схеме нежелательно. Разъемы – CMC (входные – 816, выходные – 858), применение более “экономичных” разъемов в этой схеме нежелательно. По лампам – я рекомендую NOS 6SL7 американского производства -Sylvania, Westinghouse, Radiotron – это то, что нужно. В крайнем случае можно применить наши 6Н9С или старые китайские 6N9P с металлической “юбкой”. Выходные лампы – лучший вариант – NOS Mullard, очень хороший – PSvane KT88 Mark II, Valve Art. Не рекомендую к применению KT88 от JJ и от Sovtek.

Этот усилитель  стоит того, чтобы собрать его “как полагается”, потратив определенную сумму на качественные комплектующие. По звуку эта простая конструкция – многократно надежнее, лучше, основательнее и солиднее популярных новодельных клонов известной схемы на 6SN7+300В.

Уверен, что этот усилитель задержится в вашей системе очень надолго.

Август 2015г.                                                                                г.Владивосток

P.S. Для интересующихся подробностями – результаты моделирования схемы усилителя в программах TubeCAD и SEAmpCAD KT88_2  6SL7_SRPP

P.S.S. Конструкция оказалась настолько востребованной, что мне пришлось дополнительно разработать еще один вариант усилителя –  с другим драйверным каскадом и ультралинейным включением лампы выходного каскада.

Вот схема:6N24P_KT88_001

Ультралинейное включение KT88 позволило получить выходную мощность около 8W на канал, а введение небольшой ООС понизило выходное сопротивление усилителя до 1.2 Ом (без ООС выходное сопротивление =~ 2 Ом), при этом полоса полной выходной мощности по уровню -1dB составляет 14Гц….19 кГц с неравномерностью не более 0.5 dB. Один из немногих случаев, когда ООС – в “тему”. 🙂  Этот вариант усилителя эксплуатируется в комплекте с большой “полочной” двухполосной акустикой “Odin” на динамиках Seas Excel в оформлении ФИ, с CD проигрываетелем в качестве источника звука и с трансформаторным пассивным регулятором-коммутатором Django.  Звучание системы – очень объемное и тонально насыщенное, эмоциональное, счастливый владелец охарактеризовал его как “зрелое”.  🙂

Сентябрь-Октябрь 2015г.                                                                         г.Владивосток

P.S.S.S.  Насчет монтажа. Отладку схемы я проводил на одном из “тестовых” шасси. По случаю решил наглядно показать преимущества и недостатки двух популярных способов монтажа. Вот макет однотактного усилителя, собранного по топологии “как-бы звезда” (2005 год)-

Amp_2005

Вот макет немного модифицированного варианта той же схемы, собранный по топологии “общая шина” (2015 год)

Amp_2015

🙂

Ноябрь 2015г.                                                                                г.Владивосток

Последнее путешествие усилителя Jadis DA30.

Эта история о конструкции с трудной, но счастливой судьбой – о домашнем усилителе моего хорошего знакомого и эзотерика Николая.

Когда-то, давным -давно это был усилитель Jadis DA-30.

На фото – экземпляр усилителя, аналогичный “Николаевскому”.  Заявленные производителем характеристики обещали следующее-

  • Рекомендованный диапазон нагрузок – от 4 до 16 Ом
  • Выходная мощность (@1kHz, THD ~0.6%) = 25W
  • Полоса пропускания по уровню -3dB = 20Hz…35кHz
  • Полоса пропускания по уровню -0dB = 20Hz…17кHz
  • Номинальная входная чувствительность = 320mV
  • Входное сопротивление = 100K

Ну что-же – минимум подробностей и все честно, чего не скажешь об информации на сайте jadis electronics. Как это обычно бывает  в таких случаях, в описании присутствовали мифы о “25 Вт на канал в Классе А” и о “Минимальной обратной связи”.

Схема DA-30 очень похожа на эту –  Jadis_JA30_Power_AmplifierJadis_JA30_PSU

за исключением того, что присутствуют регулятор уровня и селектор входов, выходные лампы KT88 и накал всех ламп запитан от регулируемого источника тока выпрямленного напряжения. Из схемы совершенно очевидно, что без ООС, сигнал которой снимается со вторичной обмотки выходного трансформатора- эта конструкция вообще нормально работать не сможет, а лампы выходного каскада  включены в “ультралинейном” режиме  и работают в “классическом классе” АВ. Мощность, которую “выдает” такой выходной каскад без захода в класс АВ – всего лишь около 8 Вт. Тем не менее, звучал усилитель весьма приятно, насыщено, но – совершенно “не динамично”, как-бы расслабленно.

В своей системе Николай “расслабляться” никому не дает 🙂 , поэтому в скором времени усилитель подвергся серии апгрейдов, а именно – входные и выходные разъемы были заменены на WBT и Cardas, ламповые панельки – заменены на тефлоновые с цанговыми контактами,  регуляторы и коммутатор заменены на DACT, резисторы в сигнальных цепях – на Kiwame, межкаскадные конденсаторы- на Jensen Copper Foil PIO, конденсаторы в питании – на Rubycon Black Gate (тогда они еще были доступны). После этого звучание усилителя существенно улучшилось – появилась отличная детальность в сочетании с так называемой “микродинамикой”, звук стал ясный, пластичный и льющийся, комфортный и “домашний”. Пожалуй, это был технологичесий максимум  схемотехнического решения от Jadis. Но Николаю хотелось большего.  Послушав несколько моих конструкций и таки довольно сильно переживая за результат, он обратился с просьбой переделать усилитель полностью.   Ну что-же- полностью так полностью, почему бы и нет  🙂

За основу я взял усилитель “Sun Duck” – три каскада, гальваническая связь между первым и вторым каскадами, лампы выходного каскада – в триодном включении с фиксированным регулируемым смещением. Усилитель охвачен небольшой (менее 10dB) отключаемой общей ООС. Проведенные тестовые замеры показали, что выходные трансформаторы – отличного качества,  с ними каскад на KT88 в триодном включении при выдаваемой в нагрузку мощности  16Вт легко обеспечивает полосу от 20 Гц до 25 кГц, коэффициент гармоник при этом составляет менее 1%.

Силовой трансформатор, к сожалению, оказался довольно “обычным” и ощутимо нагревался при работе, поэтому я его несколько разгрузил, применив отдельный трансформатор для питания накала. В ходе тестовых прослушиваний Николаем было принято решение отказаться от электролитических конденсаторов в цепях питания- таким образом конструкция усилителя логично превратилась в двухблочную – основные конденсаторы фильтра питания были вынесены в отдельный блок. Схемы усилителя после переделки (в реальности – после двух последовательных переделок, обратите внимание на выходной каскад) —

Николай охарактеризовал звучание получившейся конструкции как “сверхдинамичное”, с выдающейся детальностью, и очень высоким разрешением. В общем, настоящий “Hi-End” весьма серьезного уровня.

Шли годы 🙂  И вот, недавно Николай по-случаю послушал еще одну интересную систему с усилителями моей конструкции – моноблоками на 300B. Вероятно, что-то в их звучании так его впечатлило, что в феврале этого года я сделал еще один, на этот раз  окончательный и бесповоротный upgrade его усилителя. Назвал его “Final Trip”  (Последнее Путешествие или  Последний “Улет” – тут уж что кому ближе)

Усилитель стал двухкаскадным, в качестве лампы первого каскада я применил пентод С3g в триодном включении, нагруженный на межкаскадный  фазоинверторный трансформатор Hashimoto A-105. Выходной каскад – на KT88 в триодном включении, с фиксированным смещением. Выходной трансформатор был перекоммутирован так, чтобы при подключенной нагрузке в 8 Ом Raa было ~ 5.6 кОм.  Основные конденсаторы фильтра блока питания по прежнему вынесены в отдельный блок, но в корпусе усилителя все-таки есть несколько электролитических конденсаторов (C1, C2).

После переделки звучание усилителя изменилось коренным образом – при сохранении всех достигнутых ранее “динамических” свойств в звуке проявилась удивительная текучесть, плавность, музыкальность, тактичность. Усилитель хочется слушать не выключая, звук захватывает, поднимает и несет в потоке музыки… В общем –  Final Trip.  🙂

Май 2009….Февраль 2015                                                                 г.Владивосток

“Ультралинейное” включение. Патент и реальность.

Пару лет назад ко мне совершенно случайно 🙂 попала парочка однотактных трансформаторов Lundahl LL1623/90mA Amorphous Core (AM). Справочные данные можно посмотреть здесь: 1620_3_7_9202  1620_3_7_9202_AM  Трансформаторы были положены в “закрома” и недавно были найдены при ежегодной инвентаризации. Эти изделия явно заслуживали того, чтобы собрать на них достойную конструкцию или, как минимум – испытать их и послушать. Меня заинтересовало то, что выводы секций обмоток не “спрятаны”, как обычно, а расположены в свободном доступе. Эта технологическая особенность Lundahl дает возможность провести некоторые исследования так называемого “ультралинейного” трансформаторного выходного каскада.

Немного об истории вопроса.

В июне 1937 года, талантливый Британский инженер- электронщик Alan Dower Blumlein получил патент на так называемый “Ультра-Линейный” усилитель (Ultra-Linear amplifier. US Patent 2,218,902, dated 5 June 1937). Суть патентной заявки была в том, что если снабдить выходной трансформатор усилителя на лампе с экранирующей сеткой (тетроде или пентоде) несколькими отводами от первичной обмотки, то при подключении этих отводов на вторую сетку лампы образующаяся обратная связь существенно улучшает линейность усилительного каскада. Если вторая сетка подключена непосредственно на анод, то лампа с экранирующей сеткой работает подобно триоду, и чем “ближе” находится отвод, к которому подключается вторая сетка к источнику питания, тем больше характеристики выходного каскада становятся похожими на тетродные или пентодные. Blumlein утверждал, что при подключении второй стеки на отвод, сделанный примерно на 15..25% от первичной обмотки (со стороны питания) усилительный каскад сочетает в себе положительные свойства как пентодного, так и триодного каскадов – большую выходную мощность при малых искажениях сигнала.

ultra_pa1 ultra_pa2 ultra_pa3

(Иллюстрации из журнала “Радио” №11/1958г – через 21 год после изобретения) – “…Прошло 20 лет…” (с) “Месть и Закон”- старый индийский кинофильм)

Подробнее об ультралинейном включении можно почитать в этой статье – Amplifiers-and-Superlatives

Переходим к практике.

Конструктив с испытательным блоком питания (схема – 807_Tube_Amp_PS_001) у меня всегда наготове, я установил на шасси выходные трансформаторы и на дополнительной плате (“суб-шасси”) за несколько дней собрал эту весьма несложную конструкцию. 807_Tube_Amp_001

Первый каскад – классический усилитель напряжения по схеме с общим катодом. На схеме приведены два варианта драйвера. Первоначальный вариант схемы был с источником тока в анодной цепи, что позволило получить как отличную линейность, так и максимально-возможный размах выходного напряжения. Если бы выходная лампа была триодом – я бы оставил именно этот вариант.

Но, в моем случае – выходная лампа была лучевой тетрод и большого размаха выходного напряжения не требовалось. Поэтому – применил классику. На всякий случай уточняю, что для нормальной “раскачки” выходной лампы сигнал на входе первого каскада должен быть не менее ~2V RMS.

Выходной каскад – на замечательном лучевом тетроде 807 – STC807. У меня есть несколько вариантов этой лампы, в том числе и VT-100A, выпускавшейся исключительно для нужд Армии и Флота США. При проверке и снятии основных характеристик VT-100A показали себя с самой лучшей стороны –  помимо отличной термостабильности, вся дюжина (whole lot a dozen :)) имела абсолютно идентичные характеристики при существенно лучшей,  по сравнению со справочными данными, линейности ВАХ в области малых токов . Я применил фиксированное регулируемое смещение, это оказалось совершенно необходимо для точной подстройки режимов каскада в ультралинейном включении.

Итак, выходной трансформатор LL1623AM/90mA SE: Индуктивность первичной обмотки трансформатора =~ 30H, при 8 Ом на вторичной обмотке – приведенное сопротивление первичной обмотки = ~ 5.6 кОм, четыре секции позволяют организовать отвод для подключения второй сетки выходной лампы от 25, 50 и 75% обмотки. Что  же при этом в реальности происходит с характеристиками каскада ? (“Поймайте ее! И надругайтесь над ней – по очереди! (с) – “Месть и Закон” – старый индийский кинофильм)

1. Ультралинейное включение (25%).  

  • Максимальная выходная мощность = 12 Вт
  • Коэффициент гармоник на максимальной выходной мощности Kг(2) = 6%, Кг (3,5) = 0.5%
  • Выходное сопротивление Zo = 6.5 Ом
  • Полоса пропускания на 0.9 от максимальной выходной мощности = 100 Гц…12 кГц (по уровню -1dB, неравномерность +- 1dB)
  • Субъективно звучание – резковатое в области СЧ, черезмерно и нестабильно объемное, тонально неровное, несколько “нервное” и эмоциональное, с явным акцентом в области “женского вокала”, в НЧ области – воздушно неплотное, очень хорошо прорисовывается атака НЧ инструментов, сцена практически распространяется на всю комнату, глубока, нестабильна, наблюдаются звуковые артефакты в виде инструментов -“фантомов”  появляющихся перед и за слушателем. Сцена сужается и сжимается при уменьшении громкости.

2. Ультралинейное включение (50%).  

  • Максимальная выходная мощность = 7.2 Вт
  • Коэффициент гармоник на максимальной выходной мощности Kг(2) = 5%, Кг (3,5) = 0.3%
  • Выходное сопротивление Zo = 4.5 Ом
  • Полоса пропускания на 0.9 от максимальной выходной мощности = 60 Гц…15 кГц (по уровню -1dB, неравномерность +- 1dB)
  • Субъективно звучание – выразительное в области СЧ, нестабильно объемное, тонально неровное и эмоциональное, с явным акцентом в области вокала, в НЧ области –  неплотное, хорошо прорисовывается атака НЧ инструментов, верхняя струна пятиструнного баса “теряется”, сцена практически распространяется на всю ширину комнаты, глубока, нестабильна, наблюдаются звуковые артефакты в виде инструментов -“фантомов”  появляющихся перед слушателем. Сцена сужается при уменьшении громкости.

3. Ультралинейное включение (75%).  

  • Максимальная выходная мощность = 5.8 Вт
  • Коэффициент гармоник на максимальной выходной мощности Kг(2) = 5%, Кг (3,5) = 0.2%
  • Выходное сопротивление Zo = 3.4 Ом
  • Полоса пропускания на 0.9 от максимальной выходной мощности = 40 Гц…18 кГц (по уровню -1dB, неравномерность +- 1dB)
  • Субъективно звучание – выразительное в области СЧ, объемное, тонально- с некоторым акцентом в области вокала, в НЧ области –  умеренно плотное, хорошо прорисовывается атака и послезвучия струнных НЧ инструментов, нижняя струна пятиструнного баса слышна отчетливо, сцена распространяется в виде полукруга от краев комнаты, глубока, стабильна, изредка наблюдаются звуковые артефакты в виде инструментов -“фантомов”  появляющихся перед слушателем. Сцена умеренно- стабильна при уменьшении громкости.

4. Триодное включение.  

  • Максимальная выходная мощность = 4.2 Вт
  • Коэффициент гармоник на максимальной выходной мощности Kг(2) = 5%, Кг (3,5) = 0.15%
  • Выходное сопротивление Zo = 1.9 Ом
  • Полоса пропускания на 0.9 от максимальной выходной мощности = 30 Гц…22 кГц (по уровню -1dB,неравномерность не более 0.5dB).
  • Субъективно звучание – умеренно-выразительное в области СЧ, объемное, тонально- с некоторым акцентом в СЧ области, в НЧ области –  плотное, хорошо прорисовывается атака и струнных НЧ инструментов, верхняя струна пятиструнного баса слышна отчетливо, сцена глубока, распространяется в виде полукруга от краев комнаты, стабильна при уменьшении громкости.

В мою бытность студентом на практических занятиях в лаборатории Радиотехники ДВГУ мне попадались на глаза  “…Методические указания к лабораторной работе – Измерения параметров выходного каскада на лампах 6П3С, 6П6С, 6Ф6С, 6П1П, 6П14П в ультралинейном включении при разных коэффициентах передачи индуктивной обратной связи”. Жаль, что у меня не осталось копии этой методички. 🙂

Тем не менее, исходя из проведенных измерений, можно сделать следующие выводы:

  • До 50% коэффициент гармоник уменьшается быстрее, чем выходная мощность,
  • После 50%, уменьшение выходной мощности происходит быстрее, чем уменьшается коэффициент гармоник.
  • То есть, в самом общем случае, рационально применение ультралинейного включения с коэффициентом от 40 до 50% (что, собственно и следовало ожидать ).
  • Но – для более линейных ламп (например – 6V6G)  вполне реально применить трансформатор с отводом от 25% первичной обмотки.
  • Для получения хорошей полосы в области ВЧ –  необходим качественный, широкополосный выходной трансформатор с особо низкими индуктивностями рассеяния между всеми обмотками. Подробнее можно почитать в этой статье –  UL Output Transformers
  • Для получения хорошей полосы пропускания  в области НЧ первичная обмотка выходного трансформатора должна иметь большую индуктивность (30H – явно недостаточно, нужно как минимум 48Н и больше) – или – как возможный альтернативный вариант-  нужно найти мощный лучевой тетрод с низким внутренним сопротивлением.

Но об этом – в следующий раз.

Февраль 2015 год                                                                              г.Владивосток

PS Выражаю мою глубочайшую признательность и безусловное уважение  талантливому Британскому инженеру  Alan Dower Blumlein (29.06.1903 – 07.06.1942),  который известен своими работами в области измерения частотной характеристики органа слуха человека (1924), усовершенствования конструкции катушки индуктивности как нагрузки усилительного каскада (1926), усовершенствования метода нарезки матриц грампластинок (1929), изобретением стереофонического звука (1931), изобретением ультралинейного включения выходного трансформатора (1937), изобретением дифференциального усилительного каскада с “длинным хвостом” (Long Tailed Pair Amplifier – 1936),  и выдающимися разработками в области техники и технологии радиолокации (радар H2S) и телевидения.

Пара комплектов моноблоков, или 2×2=4

После изготовления Предусилителя “С3g+Hashimoto” у его счастливого владельца появилась идея, что стоит, пожалуй несколько “продолжить” усилительный тракт – то есть изготовить к предусилителю комплект оконечных усилителей мощности. Но – какие же оконечники предпочесть  – ламповые или транзисторные ? После некоторого обсуждения было принято решение – сделать два комплекта – один на лампах, а второй – гибридный, с выходным каскадом на транзисторах.  Для удобства в практической эксплуатации габариты каждого из моноблоков должны были быть не более 450x450x300 мм, внешне моноблоки должны выглядеть идентично. Такой подход к решению поставленной задачи мне наиболее симпатичен, и я взялся за работу с большим энтузиазмом. В итоге появилось две очень интересные конструкции.

1. Оконечные усилители – моноблоки. Гибридное Решение.

За основу была взята схема моего усилителя для наушников – Zen Hybrid. Усилитель двухкаскадный, однотактный, входной каскад – усилитель напряжения – на лампе, выходной каскад – усилитель тока – собран на мощных полевых транзисторах IRFP240. Поскольку предполагаемое минимальное сопротивление нагрузки составляет около 3.5 Ом, ток покоя выбран ~ 4A. При таком токе покоя ограничение максимальной выходной мощности в основном определяется габаритными характеристиками примененных радиаторов. Исходя из заданных (см выше) геометрических размеров, при размещении радиаторов на боковых сторонах корпуса и исходя из того, что при размещении усилителя в стойке с аппаратурой максимальная температура радиаторов не должна превышать 60 градусов (Цельсия :))  – расчетная выходная мощность получилась примерно  30W на канал. Для того, чтобы на выходной мощности 30W обеспечить полосу пропускания хотя бы 100 kHz, входной каскад усилителя напряжения должен обеспечивать на задающем напряжение смещения выходного каскада делителе напряжения и затворе транзистора IRFP240 сигнал с амплитудой напряжения не менее 15V и тока не менее 7 mA. Этим требованиям вполне удовлетворяет каскад  по схеме SRPP на лампе 6Н6П.

Принципиальная схема усилителя – 2x2_Hybrid_Amp

Схема блока питания – 2x2_Hybrid_Amp_PS

Основные технические характеристики:

  • Входное сопротивление, кОм = 10
  • Выходное сопротивление, Ом <= 0.3
  • Номинальное входное напряжение = 1V RMS
  • Коэффициент усиления = 10
  • Максимальное выходное напряжение на нагрузке 3.5 Ом >= 10V RMS
  • Максимальная выходная мощность на нагрузке 3.5 Ом >= 25W RMS
  • Полоса воспроизводимых частот на нагрузке 3.5 Ом при уровне выходной мощности = 0.9 от максимальной = 10Гц….100кГц
  • Коэффициент гармоник, измеренный на нагрузке 3.5 Ом при уровне выходной мощности = 0.9 от максимальной (эталонная частота = 1 кГц) <= 1%, при этом уровень третьей гармоники меньше уровня второй более чем на 20 dB, уровень более старших гармоник достоверно измерить не удалось.
  • “Взвешенный” уровень шумов и помех на выходе усилителя при закороченном входе <= 0.1 mV RMS

2. Оконечные усилители – моноблоки. Вариант на лампах. KT88 + Hashimoto.

Поскольку у Предусилителя C3g + Hashimoto организован балансный выход, обеспечивающий достсточное усиление и выходное напряжение сигнала не менее 15V я решил построить ламповый вариант моноблоков  по двухтактной двухкаскадной схеме с балансным входом.

Принципиальная схема усилителя – 2x2_Tube_Amp

Входной каскад собран на NOS двойном триоде 6SN7GTB производства компании Zenith (USA) по балансной схеме с “заземленными” катодами. Коэффициент усиления каждого плеча каскада = 15, выбранный режим обеспечивает максимальное выходное напряжение не менее 90V RMS, что c более чем достаточным запасом гарантирует полную “раскачку” выходного каскада, который собран на  подобранной по параметрам паре отличных лучевых тетродов Psvane KT-88 (Mark II), в триодном включении. В качестве выходного трансформатора я применил Hashimoto HW-60-5. На мой взгляд – на сегодняшний день это лучшие из серийно выпускаемых двухтактных трансформаторов, сочетающие отличные технические и  музыкальные характеристики с превосходным качеством производства.

Схема блока питания – 2x2_Tube_Amp_PS

Основные технические характеристики:

  • Входное сопротивление, кОм = 10
  • Выходное сопротивление, Ом <= 1.5
  • Номинальное входное напряжение = 2.5V RMS
  • Максимальное выходное напряжение на нагрузке 3.5 Ом >= 9V RMS
  • Максимальная выходная мощность на нагрузке 3.5 Ом >= 22W RMS
  • Полоса воспроизводимых частот на нагрузке 3.5 Ом при уровне выходной мощности = 0.9 от максимальной = 20Гц….70кГц
  • Коэффициент гармоник, измеренный на нагрузке 3.5 Ом при уровне выходной мощности = 0.9 от максимальной (эталонная частота = 1 кГц) <= 1.2%, при этом уровень третьей гармоники меньше уровня второй более чем на 25 dB, уровень более старших гармоник меньше уровня третьей на 20 dB.
  • “Взвешенный” уровень шумов и помех на выходе усилителя при закороченном входе <= 0.5 mV RMS

Несколько Фото –

Июль…Ноябрь 2014 год                                                                     г.Владивосток

Гибридный усилитель оказался популярным. Вот вариант исполнения – от  Александра. По моему, интересное конструкторское решение корпуса и хорошая компоновка, получилось весьма неплохо.

 

Эзотерическая борьба с вибрациями. Французская школа.

На днях попал ко мне на “медосмотр” 🙂  довольно интересный предусилитель от YBA – модель 2 “Аlpha”. Уровень сигнала при подключении проигрывателя на вход “Phono” был мал и наблюдался некоторый разбаланс уровня по каналам. Но это не самое важное. 🙂  Интересно то, как в этой конструкции решена “проблема” (***а вообще, насколько она существенна для транзисторов?) уменьшения влияния внешних вибраций на сигнал. У меня просто нет слов, только фотографии.

Схема усилителя смонтирована с обратной стороны платы, поверхностным монтажем. Почти классическая транзисторная схемотехника, ничего интересного.

Октябрь 2014 год                                                                                      г.Владивосток

Винил: Предусилитель-Корректор Часть 4.3. Ближе к делу. Военные Триоды.

В один из долгих зимних вечеров, разгребая “закрома” я вдруг нашел замечательную парочку ламп —

7F7_42

И так уж случилось, что в это же время мой очень хороший знакомый Владимир попросил изготовить для него винил коректор. Это точно судьба 🙂

Разработка и расчет схемы заняли несколько дней. Основные условия эксплуатации были следующие – картридж MM или MI, сравнительно короткие соединительные провода, входное сопротивление усилителя мощности (тоже, кстати, моего производства) = 20 кОм, чувствительность 300 mV. Я решил применить классическое решение – три каскада + пассивная сосредоточенная коррекция. Триоды лампы первого каскада соединены параллельно – это позволяет во-первых, уменьшить уровень шума и, во-вторых – уменьшить внутреннее сопротивление – что, в свою очередь, позволяет использовать в цепи коррекции резисторы номиналом не более 200…250 кОм. Не могу сказать, что я совсем не волновался о возрастании входной динамической емкости запараллеленного триода, но предварительный расчет и последующие измерения показали, что мои волнения были черезмерными. Расчет цепей коррекции был выполнен в экселевской таблице (см. раздел Литература).

Схема — 7N7_7F7_Phono

“Сквозная” АЧХ, снятая с обратным RIAA фильтром — АЧХ_7F7 (Обратите вимание на масштаб по оси “Y”)

Коротко о схеме.

Первый каскад- с общим катодом, коэффициент усиления = 48 , выходное сопротивление ~18 кОм. В цепи коррекции применены фольговые полистирольные конденсаторы и резисторы Dale с точностью 1%. Межкаскадный конденсатор – “наш” K40-У9, так же вполне подойдет и Jensen PIO. Ослабление сигнала в цепи коррекции составляет примерно -18dB. Выходной каскад – составной, с гальванической связъю, по схеме каскад с общим катодом + катодный повторитель. Коэффициент усиления второго каскада = 16, катодный повторитель обеспечивает необходимое согласование с межблочным кабелем и входом усилителя мощности. Известно некое “аудиофильское  предубеждение” о применении катодных повторителей в звуковых схемах. На мой взгляд и слух – с повторителями все нормально, просто не нужно от них требовать невозможного, например линейной работы на нагрузку, превышающую расчетное выходное сопротивление всего в 10 раз. Превышайте в 20 раз – и с музыкой все будет в порядке 🙂

Блок питания выполнен в отдельном корпусе. Трансформатор – тороидальный, мощностью 50VA, закрыт толстым стальным кожухом. Выпрямитель анодного напряжения мостовой, на диодах FR157, напряжение фильтруется электронным фильтром на транзисторе VT1, он же обеспечивает его плавную подачу. Накалы ламп соответствующих каскадов соединены последовательно и питаются выпрямленным и стабилизированным напряжением постоянного тока. Поскольку максимальное допустимое напряжение между катодом и накалом у ламп 7N7 составляет 90 Вольт, накал “поднят над землей” примерно на 50 Вольт делителем R4R5.

Основные технические характеристики.

  • Входное сопротивление = 47 кОм (может быть уменьшено установкой дополнительных резисторов)
  • Выходное сопротивление =< 1 кОм
  • Номинальная нагрузка = от 20 (и выше) кОм
  • Номинальное выходное напряжение = 0.32V RMS
  • Номинальное входное напряжение = 4mV RMS.
  • Максимальное выходное напряжение на нагрузке 20 кОм ~ 35V RMS
  • Коэффициент усиления на частоте 1 кГц~ 80
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<190uV (“взвешено” по кривой “A”)
  • Отклонение суммарной АЧХ от стандарта RIAA в диапазоне частот 20Гц…20кГц = не более 0.5dB.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 20 кОм при номинальном выходном напряжении <= 0.3%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -20 dB.

В комплекте с MI картриджем Grado Prestige Gold звучание корректора очень свободное, объемное, с отличным музыкальным разрешением и прекрасным тональным балансом. Справедливости ради нужно отметить, что коректор на пентодах С3g несколько более “быстр и динамичен”. Но для музыкальных жанров, которые предпочитает Владимир – это совершенно несущественно. 🙂

Несколько фото –

Май 2014                                                                                                    г.Владивосток

Дополнение от 15.09.2014 – в выходном каскаде так же применены лампы 7F7. В этом случае резисторы R10 и R11 = 100 кОм. Коэффициент усиления выходного каскада = 39…42, итоговый коэффициент усиления корректора увеличился до  190..193. Таким образом, при “стандартном” для большинства MM/MI картриджей выходном напряжении ~ 4mV (@1000Hz, 5 cm/sec) уровень сигнала на выходе корректора составляет ~ 0.77 V RMS (0 dbU). Выходное сопротивление при этом уровне выходного сигнала равно примерно 600 Ом. Минимальное сопротивление нагрузки на выходе корректора должно быть >= 10 кОм.

Винил: Предусилитель-Корректор Часть 4.2. Ближе к делу. Знакомые все схемы

Предусилитель-корректор на полевых транзисторах

Эта схема была сочинена мной в далеком 1988 году – для проигрывателя Aria -102. Помню, что первоначально я собрал вариант на микросхеме К157УД2, но при прямом сравнении конструкция на операционном усилителе показалась мне существенно беднее по звуку, чем на полевых транзисторах. Поэтому, после  недавнего возрождения винила в моей коллекции – первый корректор, который я решил собрать  – была та самая схема. Очень уж мне хотелось проверить ее звуковые свойства – действительно ли она была так хороша, как мне тогда казалось 🙂  Тем более, что, к моему удивлению – на просторах интернета я нашел набор  для сборки корректора с примерно такой же схемой, как и “нарисованная” мной 25 лет назад. Набор был немедленно приобретен, номиналы цепей коррекции и режимы транзисторов пересчитаны заново. В итоге схема приобрела следующий вид —   FET_RIAA_Stage_PS001 

“Сквозная” АЧХ, снятая с обратным RIAA фильтром – АЧХ_FET (Обратите внимание на масштаб по оси “Y”)

Корректор черезвычайно прост — в “базовом” варианте всего  два каскада усиления, первый на малошумящем полевике 2SK170GR (Idss = 2.6…6.5 mA), второй просто на подходящем полевике 2SK246GR (Idss = 2.6…6.5 mA). Режим работы первого каскада: ток покоя = 1.5mA. напряжение смещения = -0.27V, коэффициент усиления = 125 (с шунтирующим конденсатором в цепи истока).  Пассивная RC корректирующая цепочка включена между каскадами. С хорошей степенью точности выходное сопротивление первого каскада можно считать = R3, и номиналы элементов корректирующей цепи легко рассчитываются при помощи экселевской таблицы, приведенной в разделе Литература.  Потери сигнала в корректирующей цепочке на частоте 1 kHz составляют примерно 20 dB. Режим работы второго каскада: ток покоя = 2mA, напряжение смещения = -0.47V, коэффициент усиления = 15, выходное сопротивление примерно 10 кОм.  Для работы на длинный (более 1.5м) кабель схему выходного каскада желательно дополнить истоковым или эмиттерным повторителем на еще одном транзисторе. Таким образом, итоговое усиление схемы на частоте 1 кГц = 188, перегрузочная способность по входу составляет примерно 20dB на частоте 100Hz, номинальное выходное напряжение = 1V rms, максимальное выходное напряжение =  12V rms.  В общем-то, весьма неплохие параметры для такой простой конструкции.

Блок питания собран по схеме умножения напряжения, это позволяет существенно снизить коммутационные помехи выпрямительных диодов, выпрямленное напряжение фильтруется фильтром на биполярном транзисторе T1.

Основные технические характеристики –

  • Входное сопротивление = 47 кОм (может быть уменьшено установкой дополнительных резисторов)
  • Выходное сопротивление =< 10 кОм (в “базовом” варианте)
  • Номинальная нагрузка = от 47 (и выше) кОм
  • Номинальное выходное напряжение = 1V RMS
  • Максимальное выходное напряжение на нагрузке 100 кОм = 12V RMS
  • Коэффициент усиления ~ 188
  • Уровень собственного шума и помех на выходе при “закрытом” входе =<190uV (“взвешено” по кривой “A”)
  • Отклонение суммарной АЧХ от стандарта RIAA в диапазоне частот 20Гц…20кГц = не более 0.8dB.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 100 кОм при номинальном выходном напряжении <= 0.3%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -15 dB.

Фото конструкции –

Октябрь 2013                                                                                   г. Владивосток

“Le Monstre” Jean Hiraga и LCD

Monster Zen V1

Случилось так, что один замечательный человек, профессиональный строитель высочайшего класса и очень талантливый рассказчик –   приобрел наушники LCD-3 и, естественно обратился ко мне за усилителем для них 🙂  Заказчик – меломан со стажем, но при нашей с ним общности вкусов его музыкальное восприятие несколько не совпадает с моим. В подаче музыки ему в первую очередь необходимы напор и “динамика” – без этого суть музыкального произведения от него как бы “ускользает”, кажется неполной. Спокойствие и неяркая философская многослойность Zen ему не подошли….Задача непростая, но – почему бы и нет, можно попробовать.

При обдумывании конструкции я принял решение сделать двухтактный усилитель с выходным каскадом в классе А, с максимально широкой полосой в области НЧ и, желательно – ВЧ  – при минимальном количестве усилительных элементов. Это потенциально должно убрать факторы, сдерживающие так называемые “напор” и динамику при сохранении хорошего музыкального разрешения . Естественно, я совсем не первый, кто задумался над подобной конструкцией – поэтому  за основу был взят замечательный усилитель “Le Monstre”, спроектированный известным разработчиком Jean Hiraga в 1982 году. Его статью см в разделе “Литература”.

Схема усилителя Jean Hiraga  “Le Monstre” :Hiraga-Monstre-Monster-Class-A-amplifier-schematic

Как видно, усилитель состоит из двух симметрично-комплиментарных плеч, каждое из которых по сути представляет собой по однотактному усилителю в классе А, работающих на общую нагрузку. Усилитель не имеет разделительных конденсаторов на входе, выходе и в цепи ООС  и фактически является усилителем постоянного тока. В области ВЧ полоса пропускания ограничивается только частотными свойствами примененных транзисторов.

К сожалению транзисторы, которые применил Jean Hiraga в оригинальной конструкции, сейчас уже не выпускаются. Более-менее подходящая замена такая ==>>  2SK170 = 2SK246, 2SJ74 =2SJ103, 2SC1775, 2SD756 = BC550  , 2SA872, 2SB716 = BC560 , 2SD844= TIP3055  2SB754 = TIP2955.

“Старые” и “новые” полевые транзисторы довольно серьезно различаются по параметрам, поэтому режимы работы схемы были пересчитаны заново.

О полевых транзисторах.

Вот справочные листы на комплиментарную пару  полевых транзисторов 2SK246 (datasheet_sk246) и 2SJ103 (datasheet_2SJ103). Обратите внимание на то, что эти транзисторы разделяются на группы (GR, BL,V) по параметру Idss. Так же нужно пристально взглянуть на график Id-Vds. Напрашивается три очевидных вывода – во первых,  “комплиментарность” характеристик SK246 и 2SJ103 таки довольно приблизительна, во вторых – линейности их характеристик существенно различаются и, в третьих – для создания хотя бы приблизительно симметричной двухтактной схемы транзисторы предварительно следует отобрать как минимум по параметру Idss.

После закупки по 10 шт 2SK246GR и 2SJ103GR мне удалось отобрать четыре пары 2SK246GR  и две (!) шт  2SJ103GR c Idss = 3.9…4mA. В моем случае 2SJ103 имели очень большой разброс. Исходя из этих данных режим работы первого каскада выбран следующим образом – ток покоя = ~ 0.5*Idss, при этом наиболее линейная область получается при напряжении смещения примерно 0.4…0.5V. (При выборе рабочей точки график Id-Vds следует “масштабировать” по оси Id исходя из измеренных значений Idss)

Схема Усилителя Hiraga_Headphone_new

Схема довольно проста. В каждом плече – каскод на входе  и составной транзистор по схеме Шиклаи (Sziklai) на выходе. Про каскодную схему на входе (почему и как) хорошо написано в оригинальной статье Jean Hiraga. Совершенно очевидно, что для минимума четных гармоник необходимо, чтобы усиление плеч было максимально близким, поэтому отбор транзисторов по характеристикам крайне желателен.

Блок питания – двухполярный нестабилизированный. О влиянии на звук транзисторного усилителя стабилизации напряжения источника питания я уже упоминал ранее – см. Усилитель Zen V. Версия 10.12  Диоды выпрямительного моста зашунтированы конденсаторами, фильтр построен по многозвенной C-R-С схеме. Трансформатор питания – тороидальный мощностью 200VA, с межобмоточным и внешним ленточным экранами.

Наладка усилителя проходит в два этапа. На первом этапе выходной каскад отключается и проводится предварительная настройка входного каскада – подстройкой резистора R5 добиваются одинакового падения напряжения на резисторах R3 и R4.  Затем нужно подать на вход усилителя синусоидальный сигнал амплитудой 0.2…0.3V RMS и проконтролировать форму сигнала на коллекторах T3 и T5.  Следует помнить, что выходной каскад на биполярных транзисторах управляется током, поэтому не стоит обращать особого внимания на сравнительно небольшое выходное напряжение и усиление первого каскада.

На втором этапе подключается выходной каскад, ток покоя контролируется падением напряжения на резисторах R12 и R13. Желаемый ток покоя устанавливается подбором резисторов R3  R4 (при увеличении номинала ток возрастает). Для нагрузки сопротивлением от 25 Ом я рекомендую выбрать ток покоя ~>= 0.5А. “Ноль” на выходе подстраивается резистором R5. При нестабилизированном блоке питания вполне нормально, если напряжение на выходе будет “гулять” в пределах +- 10mV, наушникам от этого никакого вреда не будет. На этом наладку усилителя можно считать завершенной. 🙂

Об обратной связи.

В этом усилителе петля общей ООС выполняет несколько функций. Во-первых, определяет коэффициент усиления по напряжению, во-вторых, уменьшает выходное сопротивление усилителя и уровень искажений и, в- третьих – поддерживает потенциал выхода максимально близким к “0”. По логике перерасчета, если сопротивление в цепи истоков транзисторов первого каскада увеличилось, то следовало бы и увеличить величину резисторов в цепи ООС таким образом, чтобы соотношение R11 и  R10 было таким же, как в оригинальной схеме, это вроде сохранило бы степень влияния ООС на режим первого каскада по постоянному току в той же степени. Тестирование усилителя выявило следующую зависимость – увеличение номиналов резисторов цепи ООС с одной стороны, потенциально увеличивает “дрейф” нуля на выходе усилителя, с другой стороны, поскольку влияние ООС так же возрастает, то видимых изменений величины “дрейфа” не наблюдается. Поскольку в моем варианте усилителя выходные транзисторы работают в весьма щадящем тепловом режиме при токе покоя, далеком от  максимального паспортного значения – особого дрейфа нуля не наблюдается и при “старых” номиналах резисторов ООС. Я принял решение оставить их практически без изменений.

О надежности конструкции.

Как усилитель для наушников конструкция имеет очень хороший запас прочности, спокойно переносит замыкание выхода на “общий” и долговременную работу на короткозамкнутую нагрузку. В качестве “теста на выносливость” я примерно 30 минут “слушал” усилитель практически на полной мощности, закоротив его выход пинцетом. Пинцет нагрелся, а с усилителем ничего не случилось 🙂 При включении усилителя во время установления напряжения питания на выходе возможно проявление некоторых слышимых “звуковых артефактов”, но уровень их невелик и никакой опасности для нагрузки они не представляют. Поэтому применение дополнительных схем защиты и реле задержки подключения нагрузки в этой конструкции я считаю необязательным.

О Звуке

Звучит усилитель динамично, строго. В целом можно охарактеризовать звучание как очень чистое, ровное, с некоторым акцентом на вокал – примерно в той же степени, как это наблюдается у ламповых усилителей на пентодах. НЧ – строгие, сдержанные и ооочень глубокие. Черезвычайно высокая детальность, хорошая сцена. Не могу сказать, что я любитель именно такого звука – но определенный “шарм”  и “порода” 🙂 безусловно присутствуют.

Основные технические характеристики –

  • Входное сопротивление = 47 кОм
  • Выходное сопротивление =< 1 Ом
  • Номинальная нагрузка = от 25 (и выше) Ом
  • Номинальное входное напряжение = 0.4V RMS
  • Максимальное выходное напряжение на нагрузке 1 кОм = 9V RMS
  • Максимальное выходное напряжение на нагрузке 20 Ом >= 7V RMS
  • Коэффициент усиления ~ 20
  • Полоса воспроизводимых частот, на нагрузке = 20 Ом при выходном напряжении = 0.9 от максимального = 0 Гц (постоянный ток) ….500 кГц.
  • Коэффициент гармоник на частоте 1 кГц на нагрузке 20 Ом при выходном напряжении = 0.9 от максимального <= 0.5%, в основном 2-я и 3-я гармоники. Уровень третьей гармоники относительно уровня второй <= -10 dB.
  • Время выхода на рабочий режим =< 30 min, это связано установлением теплового обмена в корпусе усилителя.

Выводы и итоги.

Схема Jean Hiraga пожалуй, является лучшим двухтактным аудио усилителем, собранным на дискретных компонентах.  К сожалению, комплиментарность полупроводниковых приборов – весьма приблизительна и дальнейшее развитие так называемых “идей” полупроводниковой схемотехники возможно только с применением операционных усилителей.  За очень редким исключением, линейность дискретных полупроводниковых приборов, как усилителей переменного напряжения без использования ООС – посредственная, принципиально хуже, чем у вакуумных ламп-  тем не менее весьма интересный результат может получиться в гибридных схемах, в каскадах усиления тока.

При наладке схем на транзисторах, у меня часто возникает ощущение, что современная полупроводниковая схемотехника – продукт враждебного инопланетного разума, чуждый истинной природе человека планеты Земля. Тем не менее, я таки сделал один экземпляр “Monster Zen” в качестве “запасного-транзисторного” домашнего усилителя мощности. После завершения этой конструкции мне пришло отчетливое понимание, того что с транзисторами ТОЧНО пора завязывать. 🙂

И еще один вариант, с выходным каскадом на полевых транзисторах:

Апрель 2014                                                                                    г. Владивосток

PS  За прошедший год мне удалось отыскать некоторое количество оригинальных комплектов транзисторов. На них были сделаны два замечательных варианта усилителя –

1. Zen AKG (с увеличенной выходной мощностью и умощненным блоком питания, что позволило усилителю вполне уверенно “раскрыть” такие трудные наушники, как AKG K1000)

2. Zen Monster Balance – полностью балансная конструкция, четыре идентичных усилителя в одном корпусе, счетверенный ступенчатый регулятор уровня на прецезионных резисторах, умощненный блок питания) –

На сегодняшний день (31.10.2015) опыт сборки, наладки и прослушивания различных вариантов усилителя Zen Monster с широким “ассортиментом” наушников позволяет мне со всей уверенностью заявить, что эта конструкция, пожалуй – один из самых лучших (если не самый лучший) полупроводниковый усилитель для изодинамики.  А по эффективности и оптимальности схемотехнического решения – ему нет равных. И это не реклама, а всего лишь малая часть моего глубочайшего уважения к автору этой конструкции – талантливому инженеру Jean Hiraga.